当前位置:首页 >> 数学 >>

高中数学(文科)选修1-1、1-2知识点归纳


选修 1-1、1-2 数学知识点
第一部分 简单逻辑用语
1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句. 2、 “若 p ,则 q ”形式的命题中的 p 称为命题的条件, q 称为命题的结论. 3、原命题: “若 p ,则 q ” 否命题: “若 ? p ,则 ? q ” 逆否命题: “若 ? q ,则 ? p ” 4、四种命题的真假性之间的关系: (1)两个命题互为逆否命题,它们有相同的真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若 p ? q ,则 p 是 q 的充分条件, q 是 p 的必要条件. 若 p ? q ,则 p 是 q 的充要条件(充分必要条件) . 利用集合间的包含关系: 例如:若 A ? B ,则 A 是 B 的充分条件或 B 是 A 的必要条件;若 A=B,则 A 是 B 的充要条件; 6、逻辑联结词:⑴且(and) :命题形式 p ? q ;⑵或(or) :命题形式 p ? q ; ⑶非(not) :命题形式 ? p . 逆命题: “若 q ,则 p ”

p
真 真 假 假

q
真 假 真 假

p?q
真 假 假 假

p?q
真 真 真 假

?p
假 假 真 真

7、⑴全称量词——“所有的” 、 “任意一个”等,用“ ? ”表示; 全称命题 p: ?x ? M , p( x) ; 全称命题 p 的否定 ? p: ?x ? M , ?p( x) 。 ⑵存在量词——“存在一个” 、 “至少有一个”等,用“ ? ”表示; 特称命题 p: ?x ? M , p( x) ; 特称命题 p 的否定 ? p: ?x ? M , ?p( x) ;

第二部分 圆锥曲线
1、平面内与两个定点 F 1, F 2 的距离之和等于常数(大于 F 1F 2 )的点的轨迹称为椭圆. 即: | MF1 | ? | MF2 |? 2a, (2a ?| F1 F2 |) 。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置 焦点在 x 轴上 焦点在 y 轴上

图形

标准方程

x2 y 2 ? ? 1? a ? b ? 0 ? a 2 b2

y 2 x2 ? ? 1? a ? b ? 0 ? a 2 b2

第 1 页 共 6 页

范围

? a ? x ? a 且 ?b ? y ? b

?b ? x ? b 且 ? a ? y ? a

?1 ? ?a,0? 、 ?2 ? a,0?
顶点

?1 ? 0, ?a ? 、 ?2 ? 0, a ? ?1 ? ?b,0? 、 ?2 ? b,0?
长轴的长 ? 2 a

?1 ? 0, ?b? 、 ?2 ? 0, b ?
短轴的长 ? 2b

轴长 焦点 焦距 对称性 离心率

F1 ? ?c,0? 、 F2 ? c,0?

F1 ? 0, ?c ? 、 F2 ? 0, c ?

F1 F2 ? 2c ? c 2 ? a 2 ? b 2 ?
关于 x 轴、 y 轴、原点对称

e?

c b2 ? 1 ? 2 ? 0 ? e ? 1? a a

3、平面内与两个定点 F )的点的轨迹称为双曲线.即: 1, F 2 的距离之差的绝对值等于常数(小于 F 1F 2

|| MF1 | ? | MF2 ||? 2a, (2a ?| F1 F2 |) 。
这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. 4、双曲线的几何性质: 焦点在 y 轴上 焦点的位置 焦点在 x 轴上

图形

标准方程

x2 y 2 ? ? 1? a ? 0, b ? 0 ? a 2 b2
x ? ?a 或 x ? a , y ? R

y 2 x2 ? ? 1? a ? 0, b ? 0 ? a 2 b2
y ? ?a 或 y ? a , x ? R

范围 顶点 轴长 焦点 焦距 对称性 离心率

?1 ? ?a,0? 、 ?2 ? a,0?
虚轴的长 ? 2b

?1 ? 0, ?a ? 、 ?2 ? 0, a ?
实轴的长 ? 2 a

F1 ? ?c,0? 、 F2 ? c,0?

F1 ? 0, ?c ? 、 F2 ? 0, c ?

F1 F2 ? 2c ? c 2 ? a 2 ? b 2 ?
关于 x 轴、 y 轴对称,关于原点中心对称

e?

c b2 ? 1 ? 2 ? e ? 1? a a

第 2 页 共 6 页

渐近线方程

y??

b x a

y??

a x b

5、实轴和虚轴等长的双曲线称为等轴双曲线. 6、平面内与一个定点 F 和一条定直线 l 的距离相等的点的轨迹称为抛物线.定点 F 称为抛物线的焦点,定直 线 l 称为抛物线的准线. 7、抛物线的几何性质:

y 2 ? 2 px
标准方程

y 2 ? ?2 px

x2 ? 2 py

x 2 ? ?2 py

? p ? 0?

? p ? 0?

? p ? 0?

? p ? 0?

图形

顶点

? 0, 0 ?
x轴
? p ? F ? ,0? ?2 ?
x?? p 2
y轴

对称轴

焦点

? p ? F ? ? ,0? ? 2 ?
x? p 2
e ?1

p? ? F ? 0, ? 2? ?
y?? p 2

p? ? F ? 0, ? ? 2? ?
y? p 2

准线方程

离心率

范围

x?0

x?0

y?0

y?0

8、过抛物线的焦点作垂直于对称轴且交抛物线于 ? 、? 两点的线段 ?? ,称为抛物线的“通径” , 即? ? ? 2p . 9、焦半径公式:

p ; 2 p 2 若点 ? ? x0 , y0 ? 在抛物线 x ? 2 py ? p ? 0? 上,焦点为 F ,则 ?F ? y0 ? ; 2
2 若点 ? ? x0 , y0 ? 在抛物线 y ? 2 px ? p ? 0? 上,焦点为 F ,则 ?F ? x0 ?

第三部分 导数及其应用
1、函数 f ? x ? 从 x1 到 x2 的平均变化率:

f ? x2 ? ? f ? x1 ? x2 ? x1
x ? x0

2、导数定义: f ? x ? 在点 x0 处的导数记作 y ?

? f ?( x0 ) ? lim

?x ?0

f ( x0 ? ?x) ? f ( x0 ) ; . ?x

第 3 页 共 6 页

3、函数 y ? f ? x ? 在点 x0 处的导数的几何意义是曲线 4、常见函数的导数公式:
' ① C ? 0 ;② ( x n ) ' ? nxn?1 ;

y ? f ? x?

在点

? ? x0 , f ? x0 ??

处的切线的斜率.

③ (sin x) ' ? cos x ;④ (cosx) ' ? ? sin x ; ⑦ (log a x ) ?
'

⑤ (a x ) ' ? a x ln a ;⑥ (e x ) ' ? e x ; 5、导数运算法则:

1 1 ' ;⑧ (ln x ) ? x ln a x

?1? ? 2?

? ? ? f ? x ? ? g ? x ?? ? ? f ? ? x ? ? g? ? x ? ; ? ? ? f ? x ? ? g ? x ?? ? ? f ? ? x? g ? x ? ? f ? x ? g? ? x ? ;

? f ? x ? ?? f ? ? x ? g ? x ? ? f ? x ? g ? ? x ? ? g ? x ? ? 0? ? ? ? 2 g x ? ? g x ? ? 3 ? ? ? ? ?? ? ?



6、在某个区间 ? a, b ? 内,若 f ? ? x ? ? 0 ,则函数 y ? f ? x ? 在这个区间内单调递增; 若 f ? ? x ? ? 0 ,则函数 y ? f ? x ? 在这个区间内单调递减. 7、求函数 y ? f ? x ? 的极值的方法是:解方程 f ? ? x ? ? 0 .当 f ? ? x0 ? ? 0 时:

?1? 如果在 x0 附近的左侧 f ? ? x ? ? 0 ,右侧 f ? ? x ? ? 0 ,那么 f ? x0 ? 是极大值; ? 2 ? 如果在 x0 附近的左侧 f ? ? x ? ? 0 ,右侧 f ? ? x ? ? 0 ,那么 f ? x0 ? 是极小值.
8、求函数 y ? f ? x ? 在 ? a, b? 上的最大值与最小值的步骤是:

?1? 求函数 y ? f ? x? 在 ? a, b ? 内的极值; ? 2 ? 将函数 y ? f ? x? 的各极值与端点处的函数值 f ? a ? , f ? b ? 比较,其中最大的一个是最大值,最小的一个是
最小值. 9、导数在实际问题中的应用:最优化问题。

第四部分
1.概念:

复数

(1) z=a+bi∈R ? b=0 (a,b∈R) ? z= z ? z2≥0; (2) z=a+bi 是虚数 ? b≠0(a,b∈R); (3) z=a+bi 是纯虚数 ? a=0 且 b≠0(a,b∈R) ? z+ z =0(z≠0) ? z2<0; (4) a+bi=c+di ? a=c 且 c=d(a,b,c,d∈R); 2.复数的代数形式及其运算:设 z1= a + bi , z2 = c + di (a,b,c,d∈R),则: (1) z 1±z2 = (a + b)± (c + d)i; (2) z1.z2 = (a+bi)·(c+di)=(ac-bd)+ (ad+bc)i;
第 4 页 共 6 页

(3) z1÷z2 =

(a ? bi)(c ? di) ? bd bc ? ad (z ≠0) ; ? ac ? i 2 2 (c ? di)(c ? di) c ? d 2 c2 ? d 2

3.几个重要的结论: (1) (1 ? i) 2 ? ?2i ;⑷ 1 ? i ? i; 1 ? i ? ?i; 1? i 1? i

(2) i 性质:T=4; i 4n ? 1, i 4n?1 ? i, i 4n?2 ? ?1, i 4n?3 ? ?i ; i 4n ? i 4n?1 ? i 4?2 ? i 4n?3 ? 0;
1 (3) z ? 1 ? z z ? 1 ? z ? 。 z
4.运算律: (1) z
m

? z n ? z m?n ; (2)(z m ) n ? z mn ; (3)(z1 ? z2 ) m ? z1 z2 (m, n ? N );
m m

5.共轭的性质:⑴ ( z1 ? z 2 ) ? z1 ? z 2 ;⑵ z1 z 2 ? z1 ? z 2 ;⑶ (

z1 z ) ? 1 ;⑷ z ? z 。 z2 z2

6. 模的性质: ⑴ || z1 | ? | z 2 ||?| z1 ? z 2 |?| z1 | ? | z 2 | ; ⑵ | z1 z 2 |?| z1 || z 2 | ; ⑶|

z1 | z1 | ; ⑷ | z n |?| z | n ; |? z2 | z2 |

第五部分
1.线性回归方程 ①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系 ③线性回归方程: y ? bx ? a (最小二乘法)
n ? xi yi ? nx y ? ? i ?1 ? ?b ? n 2 ? xi2 ? nx ? ? i ?1 ? ? ? a ? y ? bx
?

统计案例

注意:线性回归直线经过定点 ( x, y ) 。

2.相关系数(判定两个变量线性相关性) :r ?

? (x
i ?1

n

i

? x)( yi ? y )
n

? (x
i ?1

n

i

? x) 2 ? ( y i ? y ) 2
i ?1

注:⑴ r >0 时,变量 x, y 正相关; r <0 时,变量 x, y 负相关; ⑵① | r | 越接近于 1,两个变量的线性相关性越强;② | r | 接近于 0 时,两个变量之间几乎不存在线性相 关关系。 3.回归分析中回归效果的判定: ⑴总偏差平方和:

? ( yi ? y) 2 ⑵残差: ei ? yi ? yi ;⑶残差平方和: ? ( yi ? yi) 2 ;⑷回归平方和:
i ?1 i ?1

n

?

?

n

?

第 5 页 共 6 页

?(y
i ?1

n

i

? y ) 2 - ? ( yi ? yi) 2 ;⑸相关指数 R 2 ? 1 ?
i ?1

n

?

? ( yi ? yi ) 2 ?(y
i ?1 i ?1 n

n

?


i

? yi )

2

注:① R 得知越大,说明残差平方和越小,则模型拟合效果越好; ② R 越接近于 1, ,则回归效果越好。 4.独立性检验(分类变量关系) : 随机变量 K 越大,说明两个分类变量,关系越强,反之,越弱。
2 2

2

第六部分 一.推理:

推理与证明

⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后 提出猜想的推理,我们把它们称为合情推理。 ①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个 别事实概括出一般结论的推理,称为归纳推理,简称归纳。 注:归纳推理是由部分到整体,由个别到一般的推理。 ②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称 为类比推理,简称类比。 注:类比推理是特殊到特殊的推理。 ⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。 注:演绎推理是由一般到特殊的推理。 “三段论” 是演绎推理的一般模式, 包括: ⑴大前提---------已知的一般结论; ⑵小前提---------所研究的特殊情况; ⑶结 论---------根据一般原理,对特殊情况得出的判断。

二.证明
⒈直接证明 ⑴综合法 一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成 立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。 ⑵分析法 一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显 成立的条件(已知条件、定义、定理、公理等) ,这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。 2.间接证明------反证法 一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种 证明方法叫反证法。

第 6 页 共 6 页


相关文章:
高中数学选修1-1、1-2、4-4知识点归纳
高中数学选修1-11-2、4-4知识点归纳_数学_高中教育_教育专区。本资料由备课吧-123ppt.net(谐音:123 皮皮的 .呐)搜集整理 选修 1-11-2 数学知识点...
(文科)高中数学选修1-1重要知识点
(文科)高中数学选修1-1重要知识点_数学_高中教育_教育专区。选修 1-1 第一...2 y ? 0 ,则 a 的值为( 9 a2 D.1 ) B.(0,1) D.(0,+∞) A....
(文科)高中数学选修1-1、1-2、4-4重要知识点
(文科)高中数学选修1-11-2、4-4重要知识点_高三数学_数学_高中教育_教育专区。今日推荐 88份文档 2014全国高考状元联手分享状元笔记 衡水中学文科学霸高中数学...
人教版高中数学选修1-1知识点总结(全)
人教版高中数学选修1-1知识点总结(全)_数学_高中教育_教育专区。高中数学选修 1-1 知识点总结第章 简单逻辑用语 ? 命题:用语言、符号或式子表达的,可以判断...
高二数学选修1-1、1-2数学知识点(文科)
高二数学选修1-11-2数学知识点(文科)_数学_高中教育_教育专区。选修 1-1...2 2 2 第六部分 一.推理: 推理与证明 ⑴合情推理:归纳推理和类比推理都是...
高中数学选修1-1知识点归纳
高中数学选修1-1知识点归纳_数学_高中教育_教育专区。高中数学选修 1-1 知识...高中数学文科选修1-2知识... 6页 免费 高中数学选修1-1、1-2、... 7页...
人教版数学选修1-2知识点总结
人教版数学选修1-2知识点总结_数学_高中教育_教育专区...① 归纳推理 由某类食物的部分对象具有某些特征, ...衡水中学文科学霸高中数学笔记 清华附中文科学霸高中政治...
人教版高中数学选修1-1知识点总结(全)
人教版高中数学选修1-1知识点总结(全)_高一数学_数学_高中教育_教育专区。高中数学选修 1-1 知识点总结第章 简单逻辑用语 ? 命题:用语言、符号或式子表达的...
...知识点总结:新课标人教A版高中数学选修1-2知识点总...
人教版高中数学知识点总结:新课标人教A版高中数学选修1-2知识点总结_数学_高中...①归纳推理 由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有...
高中数学选修1-1、1-2、4-1、4-4知识点归纳
高中数学选修1-11-2、4-1、4-4知识点归纳_高二数学_数学_高中教育_教育...(文科)高中数学选修1-1、... 7页 免费 高中数学必修(1-5)+选修... 29页...
更多相关标签: