当前位置:首页 >> 数学 >>

课解·人A数学·必修1·16版(答案)


!"#$%&
'()*+,-./01
 *+,
 *+,234-56
2 2 . ( 1 ) 9= 0*S- 3= - 3 , EP x - v?^E 9= 0*S%&*'(-{ 3 , - 3 } . Px - ( 2 ) ,R?§¨R. ]|}R)? 1pr?$? 1??????

*R, . °e*,R- 2 ^eL 8* 2 , 3 , 5 , 7 } . vw,R%&*'(]{ ( 3 ) '(*+,]O. {±h??, ????y = x + 3 , ( x , y ) . ( 1 , 4 ) } . ?v?'(]{ y =- 2 x + 6 ( 4 ) x - 5< 3 , < 2*Q '(*+,-?? 4 ?x x | x < 2 } . R. ?cKt*u']{ 2

!"#$%&'(

【 ( ) 】  P 2 3 ) 8 ) !( "!( #$%&'(. 3 ) 0 0 3345* !( )*+,- “ ./012 2 . 67801” 4 ) 2 0 0 43 19 1:;<=>? !( )+,- “ . @A*67B?C” 5 ) . !( )+,-“ DEF” 6 ) !( )+,-“ "GH l *IJKLMN d * . 67BO” 2 7 ) 3 x - 2= 0*67B !( )+,-“ EP x + . QRS” 8 ) 0 0 43 99WV* !( )+,- “ TU)V 2 . 67XY7V4” Z[!\#]^7[_M*+,`&*7B ab. 【 ( ) 】  P 3 ( 1 ) ( 2 ) ], +,_M. c], +,c_M, d“ efg” *hic_M, jklmnfg]o-e fg. 【 ( ) 】  P 4 ( 1 ) “ , . pLqKL 2 reLqKL 8*sR” ( 2 ) - 7< 3*u']eL 1 0* c$, cKt x Z[+,]xycz*. vwQR%&*'(, 【 ( ) 】  P 5 ( 1 ) {|}~、 xyk???k??'(?? |}~?????'(+,*?? w?*?O, c?Ft*??. xyk???k]'(~ ??, , w??*?t??. ?)xyk????, ?? , ?_?x??%&'(*+, ?{L??+,c ??k??????+,*??? ??*w?', ?, ?{L??j?'q+,??*w?'. 2 ( 2 ) 4= 0*vwQRS ¤|}~: EP x - %&*'(; 2 { 2 , - 2 } ; { x x - 4= 0 } . xyk: ??k: ∈R|
!"#)*+,'

{

{

}

 *+,7289:;

!"#$%&'(

【 ( ) 】  P 7 ·???]'(='(;?*?? ; ?L?? ]+,='(;?*?? , ?·????4??B ??L???4?+,='(;? . Q '(;? , !?.
!"#)*+,'

【 ( ) 】  P 7 1 . { a , b , c } S?\'*M?, *\'?]??+ , b ,a =c )* 1Bq 2Bq 3B-+,*'(. ? a , b , c } S?\'*?¨, ?' ? ?] { *\'. v? a , b , c } { a } , { b } , { c } , { a , *vw\'] ?, '({ b } , { b , c } , { a , c } , { a , b , c } . 2 . ( 1 ) 2 ) 3 )=  ( 4 ) 5 ) ∈ ( ∈ ( ? ( ?  ( 6 )= 3 . ( 1 ) ∵B= { 1 , 2 , 4 , 8 } , ∴A . ?B ( 2 ) A={ x | x = 3 k , k } ∈N ]^|}R) 3*? B= { x | x = 6 z , z } ∈N ]^|}R) 6 R`&*'(, 6*?R7M] 3*?R, *?R`&*'(, ?3 *?Rc7M] 6*?R, d? B)*+,#] A ∴B . *+,, ? A)+,c#] B*+,, ?A ( 3 ) 4= 1 0*??R] 2 0*?R, { x | d? A= x 0*??R, x { x | x 0*?R, ] 4= 1 ∈N+}= ]2 x { x | x = 2 0 m , m B . ∈N+}= ∈N+}=
 *+,289<=

!"#$%&'(

【 ( ) 】  P 5 1 . ( 1 ) 2 ) 3 ) ∈ ? ∈ ? ( ?  ( ?   ( 4 ) ∈ ?

【 ( ) 】  P 8 C '( ]^'( A*vw+,?'( B*vw +,%&*.



 

【 ( ) 】 !" P 9 ( 1 ) A A&?. ( 2 ) A A&?. ∪A= ∪? = 【 ( ) 】 !" P 1 0 ( 1 ) A A&?. ( 2 ) A ∩A= ∩? = ?&?.
!"#)*+,'

【 ( ) 】 !" P 1 1 1 . A { 5 , 8 } , A { 3 , 4 , 5 , 6 , 7 , 8 } . ∩B= ∪B= 2 . {- 1 , 5 } , B= {- 1 , 1 } , d- A= v? A ∪ B= {- 1 , 1 , 5 } , A {- 1 } . ∩B= 3 . A x | x] K ? G ? ? ? F } , A ∩B={ ∪ B= { x | x . ]K???FqG???F} . 4 ¤ ? ? 1v ?, d={ 1 , 3 , 6 , 7 } , { 2 , 瓓 瓓 UA UB= 4 , 6 } , B ) = { 2 , v? A ∩( 瓓 U 4 } , ( A ) ( B ) = { 6 } . 瓓 ∩ 瓓 U U 【 . 1 】 ( )  1 !" P 1 1 #$ 1 A 1 . ( 1 ) 2 ) 3 ) 4 ) 5 ) ∈ ( ∈ ( ? ( ∈ ( ∈  ( 6 ) ∈ 2 . ( 1 ) 2 ) 3 ) A={ x | x = ∈ ( ?  ( ∈ 【  】 k - 1 , k } 3'()* 1 ” 3 ∈Z %&“ ')+,'-., 5= 3× 2- 1 , ∴5 . - 1 0= 3× (- 3 )- 1 , ∴- 1 0 ∈A ∈ A . k - 1 ( k ) , ∴7 . /7 ≠3 ∈Z ?A 3 . ( 1 ) 2 , 3 , 4 , 5 , pL 1reL 6*?Rw 4B: { 2 , 3 , 4 , 5 } ; ? 2 ) ( x - 1 ) ( x + 2 )= 0*u- x = 1q x =- 2 , ( { 1 , - 2 } ; ? A= ( 3 ) 3< 2 x - 1 , 1< x . ^- ≤3 ?- ≤2 , ∴x = 0 , , . ∴B= { 0 , 1 , 2 } . ?x ∈Z q1 q2 2 4 . ( 1 ) { y | y = x- 4 , x }= { y | y 4 } ; ∈R ≥- 2 ( 2 ) y = , ?x ≠ 0?, ?Rw??, ???x { x | x } ; ≠0 4 ( 3 ) 3 x 2 x ≥4- *u- x ≥ , u'?×-'( 5 *Ft x x ≥ 4 . 5 5 . ( 1 ) 2 ) ? ? ? ? ( ∈ ? ?  = ( 3 ) ? ? 6 . x - 7 2 x , x | x } , ^3 ≥8- ?x ≥3 ? B={ ≥3 ¤?? 2v?.

{ 1 , 2 , 3 , 4 , 5 , 6 } , B { 3 } , ?d- B ∪C= ∩C= B )= { 1 , 2 , 3 , 4 , 5 , 6 } , v? A ∩( ∪C A B )= { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 } . ∪( ∩C 8 . {'(~??“ V??M, 6X???V° A ) ?-( ∩B ∩C= ?. ??$??????” ( 1 ) A { x | x ∪B= ]??7??àq??á?? ; à*?V} 2 ) A { x | x ( ∩C= ]???7??à????? . ?à*?V} 9 . e n n ????? V ?¤?? 3v?, ^??? B { x | x ; ∩C= ]DEF} B= { x | x ; 瓓 ]èécêK*?ì?éF} A A = { x | x }= 瓓 ]íw7%?é?ì*?éF S { x | x . ]?F}

{

}

#$ 2 A { x | x } ; A { x | 3 < 4 } . ∪B= ≥2 ∩B= ≤x 7 . { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 } , d- A= { 1 , 2 , 3 } , A { 3 , 4 , 5 , 6 } . v? A ∩B= ∩C=

#$ 3 1 0 . { x | 2 < x < 1 0 } , A )= d- A ∪B= v?瓓 ∪B R( { x | x 0 } ; ≤2q x ≥1 x | 3 < 7 } , A )= d- A ∩ B={ ≤x v? 瓓 ∩B R( { x | x < 3qx } ; ≥7 = { x | x < 3 } , ) d-瓓 ≥7q x v? ( 瓓 ∩ B= RA RA { x | 2< x < 3q 7 < 1 0 } ; ≤x = { x | x 0 } , )= d-瓓 ≥1 qx ≤2 v? A ∪( 瓓 RB RB { x | x < 7q x 0 } . ≤2q 3 ≤x ≥1 B 1 . 4  【 1 , 2 }=A ,  】 01 B ?A ∪ B={ 23 / - . A' 4 - 5 ?、 -. B% - . A' 4 -, { 1 } 、 { 2 } 、 { 1 , 2 } , 678'-. B5 49. 2 . x -y = 1?GH x + 4 y = 5 '( D??GH 2 , ( 1 , 1 ) y = x , *AO Z??GH*AO ?GH ? ? D . ?C 3 . ( 1 ) = 3?, A={ 3 } , 1 , 4 } , ?a ?d- B={ { 1 , 3 , 4 } , A v?A ∪B= ∩B= ?; ( 2 ) = 1?, A={ 3 , 1 } , 1 , 3 , ?a v? A ∪ B={ 4 } , A { 1 } ; ∩B= ( 3 ) = 4?, A={ 3 , 4 } , 1 , 3 , ?a v? A ∪ B={ 4 } , A { 4 } ; ∩B= ( 4 ) 、 3 、 4?, A={ 3 , a } , ?a ≠1 v? A ∪ B= { 1 , 3 , 4 , a } , A B = . ∩ ? 4 . 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , d- U =A ∪ B={



1 0 } , A )={ 1 , 3 , 5 , 7 } , , 3 , 5 , 7 , ∩( 瓓 v? 1 ∈瓓 UB UB B= )= { 0 , 2 , 4 , 6 , 8 , 9 , 1 0 } . 瓓 瓓 U( UB

 *./>?56
 *./201

!"#$%&'(

【 ( ) 】  P 1 6 ?. 【 ( ) 】  P 1 7 k = ( k ) x | x ò?!?R y ≠0 *M?ó] { ≠ x 0 } , y | y } , , ?ó] { ≠0 ?LM?ó)*67BR x k = ( k ) ??ó)#w?7*R y ≠0 ????. x 【 ( ) 】  P 1 9 ?R*?BM??¨?]7?*, ?]÷?? ù*??Oc?, ú?M?]ü??? ! * " O? ?, ?#$M?]ü'(*"O??. Z %& c ' ? ??RQ¨]ü??R' A"??R' B*7B? (*??.
!"#)*+,'

x?k*,O]c??<=& ??G >? ?= |?0ê??*?R?. c]vw*?R#${u + k??, ¤7 @ ) AB=?C;?*?R??&c${u+k??. ( 2 ) S ) r ) ¤D*.E( = D * FG ( ;?*?R ??. 2 S = r , r > 0 . {u+k??: π : {x?k??
. 5  r 0 1 1 . 5 2 2 . 5

. 7 9 3 . 1 4 7 . 0 7 1 2 . 6 1 9 . 6  S 0

  {?4k??( : ¤?? 4v?)

【 ( ) 】  P 1 9 1 . ( 1 ) x+7 , d- 4 ≠0 ?x ≠- 7 , v??R 4

7 1 f ( x )= *M?ó- x ∈R x ≠- . 4 x + 7 4 ( 2 ) x + 3 , 3 , d- 1- ≥0r x ≥0 ?- ≤x ≤1 v

{

}

( x )=槡 1- +槡 x x x + 3- 1*M?ó- { ??R f ∈ R| - 3 } . ≤x ≤1 2 . ( 1 )f ( 2 ) =2 8 , f (-2 ) = -2 8 , f ( 2 )+ f (- 2 )= 0 . 3 3 ( 2 ) f ( a )=3 a +2 a , f (-a )= -( 3 a +2 a ) , f ( a )+ f (- a )= 0 . 3 . ( 1 ) t | 0 cêK. d-< ) *M?ó- { ≤t ≤ 2 6 } , . ?*)*M?ó- R ( 2 ) , cêK. d-< ) *M?ó- R ? *) * x | x } . ≠0 M?ó-{
 *./256@

 4 【 ( ) 】  P 2 3 3 ) ¤HI( )*???? f J -: 67B D #? , f : B A ??*K>??F LM?? → c]ü'( B " A*NO. 4 ) ¤HI( )*???? f J -: 67BV4# : B LM?? f ??P*QR, →A]ü'( B" A* NO.
!"#)*+,'

【 ( ) 】  P 2 3 1 . 5 , ¤?? v? D *G G A C =5 0c m ,S F * é A B= xc m , B C=9 0 ° , ^L ∠A ^TU B C= 槡 25 0 0- ∴S F x. MV, A B C D* .E y =A B ·B C=x ·  5 5 0 , ∴0< x < 5 0 . 2 . ( 1 ) ( 2 ) ( 3 ) ?= D?, ?= A?, ?= B? W(?°X. YZ= C?ê[*7\]?$-: >? ?*^"???_, v??`< a, *9 ? b ?? c L]fg?`B. de?, 3 . = ^h ??*?ù, wy x - 2 , x , ≥2 | x - 2 | = ijk 2- x , x < 2 . = x - 2 ( x ) = 2-x ?y ≥2 =y ( x < 2 ) x - *? 4, ?? y=| 2 | *?4, ¤?? 6v?.  6 B< A C= 25 0 0- x. ? ∵0<A 槡
2 2

!"#$%&'(

【 ( ) 】  P 2 0 ( 1 ) u+kw?B , O: 7]??、 -. ?? / ?? 0 ?*??; á]?? 12 u + t?? 3 ?7 B|?0*?v??*?R?. ?4k*,O]G"、 F4???|? 0, ?5 ê??R?*? !67, w 8 L 12 ? 49:; ? R*n[?¨.

{



 

3 槡 4 . ; 4 5 ° . 2 【 . 2 】 ( )  1  P 2 4 A% x 3 1 . ( 1 ) - 4 , , ( x )= ^x ≠0 ?x ≠4 v? f * x - 4 x | x } . M?ó]{ ≠4
2 ( 2 ) f ( x )=槡 x d-?L x ∈ R * 3l 7B?, 2

( x )=槡 . x*M?ó] R #w??, v? f 2 ( 3 ) x+2 , , ^ x -3 ≠0 ?x ≠ 1r x ≠2 v? 6 f ( x )= 2 x x } . *M?ó-{ ∈R| ≠1r x ≠2 x- 3 x + 2 4- x , ≥0 ( 4 ) , ( x )= ^ ?x ≤4r x ≠1 v? f x - 1 ≠0

{

4- x 槡 x x } . *M?ó]{ ∈R| ≤4r x ≠1 x - 1 2 . ( 1 ) f ( x ) , g ( x ) x | *M?ó- R *M?ó- { x } , ∴f ( x ) ( x ) ≠0 ?m*M?óc?, =g cêK. ( 2 ) f ( x ) , g ( x ) 0 , *M?ó- R *M?ó- [ + , ∴f ( x ) ( x ) ?m*M?óc?, =g cêK. ∞)
2 6 ( 3 ) f ( x ) ( x ) , ∵槡 =x , x =g *M?ó#] R ∴?m*????ê?, ∴f ( x ) ( x ) =g êK. 3 . ( 1 ) ( 1 ) , y = 3 x ?R?4¤?? 7 *M?óR , . ?ó- R 8 ( 2 ) ( 2 ) , y = *M?ó?R? 4 ¤?? 7 x { x | x } , y | y } . ≠0 ?ó-{ ≠0 ( 3 ) ( 3 ) , y =- 4 x + 5*M? ?R?4¤?? 7 , . ?ó- R ó- R 2 ( 4 ) ( 4 ) , y =x - 6 x + 7*M ?R?4¤?? 7 , y | y 2 } . ?ó- R ?ó-{ ≥- 3

2 2 f ( a + 3 )= 3 a + 1 3 a+ 1 4 ; f ( a )+f ( 3 )= 3 a - a + 1 6 . 5 3+ 2 5 =- ≠ 1 5 . ( 1 ) 4 , 3 , 1 4 ) dv?O ( c 3- 6 3 ( x ) ??R f *?4?. ( 2 )- 3 . x + 2 ( 3 ) = 2 , = 1 4 . ^ u? x x - 6 2 f ( 1 )= 1 + b ·1 + c = b + c + 1 = 0 , 6 . uk7: ^ 2 f ( 3 )= 3 + b ·3 + c = 3 b + c + 9 = 0 , b =- 4 , ? c = 3 . 2 2 ∴f ( x )= x - 4 x + 3 , ∴f (- 1 )=(- 1 ) - 4× (- 1 )+ 3= 8 . 2 ( 1 )=f ( 3 )= 0?, 1 , 3] x +b x + uká: ^f c = 0*?BS. ∴b =- ( 1+ 3 )=- 4 , c = 1× 3= 3 . 2 2 ∴f ( x )= x - 4 x + 3 , ∴f (- 1 )=(- 1 ) - 4× (- 1 )+ 3= 8 . 2 ( 1 )=f ( 3 )= 0?, 1 , 3] x +b x + uk?: ^f c = 0*?BS. 2 2 ∴f ( x )= x + b x + c = ( x - 1 ) ( x - 3 )= x - 4 x + 3 , ∴f (- 1 )= (- 1- 1 )× (- 1- 3 )= 8 . 7 . ( 1 ) ( 1 ) . ( 2 ) ( 2 ) . ¤?? 8 ¤?? 8

{

{

 7
2 . f (- 2 )= 8+ 5 2 ; f (- a )= 3 a + 5 a + 2 ; 4 槡 槡

2 2 2 d = x + y , , y , d , ^n?? x l = 2 x + 2 y , x > 0 , d > 0 , d > x . 1 0 l y = ( x > 0 ) , l = 3??B0*?Ru+t. !¤, x 2 0 2 2 x + ( x > 0 ) , l = 2槡 ( d > 0 ) . d + 2 0 x d2 4 v 9 . x = v t , = 2t . ???? π v? x 2 d π 0 , h ] , ??????R*?ó][ v??R*M 2 h d π , . ?ó- 0 4 v 1 0 . of -'( A"'( B* NO, ?ü A" B 8 , : *NO?w p ijf ( a )= 0 , f ( a )= 0 , f ( a )= 0 , ( ( ( 1 )f 2 )f 3 )f ( b )= 0 , ( b )= 0 , ( b )= 1 , f ( c )= 0 ; f ( c )= 1 ; f ( c )= 0 ;

8 . ^???

{

 8 x y = 1 0 ,

( )

[

]

{

{

{



f ( a )= 1 , f ( a )= 1 , f ( a )= 1 , ( 4 )f 5 )f ( 6 )f ( ( b )= 0 , ( b )= 1 , ( b )= 0 , f ( c )= 0 ; f ( c )= 0 ; f ( c )= 1 ; f ( a )= 0 , f ( a )= 1 , ( ( 7 )f 8 )f ( b )= 1 , ( b )= 1 , f ( c )= 1 ; f ( c )= 1 . B& 1 . ( 1 ) p | - 5 < 6 } |?0 p ?q{ ≤p ≤0q 2 ≤p ∴M?ó-{ p | - 5 < 6 } . K*3??, ≤p ≤0 q2 ≤p ( 2 ) 2 , 5 ] 0 ,+∞ )=[ 0 , ?R?rs-[ ∪[ + , ∴?ó-[ 0 , + . ∞) ∞) ( 3 ) r r | 0 < 2q r > 5 } ?{ ≤r ? q ???w?7 *p ?=;??. 2 . ???\*7B?R*?4¤?? 9v?.

{ {

{ {

{

2 , ∴?Ru+t- t ( x )= ^?? 0 ≤x ≤1 3 5 ( 2 ) ( x ) ( 4 ) . ∴ üe x ^t u + t, ?? t ≈3h 3h . "yz?p{ x+ 4 1 x 2- 槡 + ( 0 2 ) , ≤x ≤1


 *./289AB
 *CDA-EFGH

!"#$%&'(

 9 ( 1 ) Ftc?. ( 2 ) u ± h - 0q v ± h - 5* O c $ ? ? 4?. - 3 ,  - 2 . 5< x <- 2 , ? 2 ,   - 2 <- 1 , ≤x ?- - 1 ,   - 1 < 0 , ≤x ? ? 3 . f ( x )=?0 ,  0 < 1 , ≤x ,  1 < 2 , ?1 ≤x ? ,  2 < 3 , ≤x ?2 ?3 ,  x = 3 . = f ( x ) , 0v?. wy ??R?4¤?? 1

【 ( ) !"】  P 2 8 0 ] ( x ) ?x ∈(- ?, |x *} p, ê?* f | ∞, 0 ,+∞ ) ~e; ?x ∈[ ?, |~ x * } p, ê?* f ( x ) ?|~}p. 【 ( ) )*】  P 3 0 1 2]?R y = ¤?? 1 x *?4. ( 1 ) = { x | x }= M?ó I ≠0 (- 0 ) 0 , + . ∪( ∞, ∞) 1 ( 2 ) ( x )= , ?R f ?? x 0 ) 0 , +∞ ) ?(- ?? ? ( ∞, 2  1 . ?ij-?R ??¤Z: , x - 0 ) ox K * 3 ??BcêK* ? ∞, 1 2 ]( x 1 1 x 1- 2 x , ( x )- f ( x )= - = . QR, rx ?f 1< 2 2 1 x x x x 2 1 1 2 x 0 , x x 0 , ( x )-f ( x )< d- x v? f 1- 2< 1 2> 2 1 0 , f ( x ) < f ( x ) . ? 2 1 1 ( x )= ???(- 0 ) v? f ?-?R. ∞, x 1 ( x )= ? ? ? ( 0 ,+∞ ) ?V?? f ?- x ?R. 【 ( ) !"】  P 3 0
2 ( x )=-x , ??R f -!, ? 3 ?* x ∈R #w f ( x ) , ( 0 )= 0 , , ≤0 rf ?vw*?R?#cpL 0 , ( x ) r??w—B?R?KL 0 d??R f *°p ?&]vw?R??)°p*?. 【 ( ) !"】  P 3 0 = f ( x ) ?R y *°e?*M?¤ Z: 7 ? ?, o y = f ( x ) I , N ?R *M?ó- ¤ H? ?QR ??: ( 1 ) , ( x ) ; ( 2 ) , ?L3?* x ∈I #w f ≥N ?? x ∈I 0 ( x )= N , = f ( x ) ?? f LM, >m? N]?R y *° 0 e?.

  0 1  1  1 . ( 1 ) 1v?. ∵ ∠A P B= 9 0 ° , ∴A B= 4 ¤?? 1 x+ 4 2 , ∴^ A" Bv{??- 槡 . x + 4 槡 3 1 2- x B C= 1 2- x , ∴^ B" Cv{??. 5
2 x + 4 + ∴ü e x " y z ? { ? ? - t =槡 3 1 2- x . 5 2

!"#)*+,'

【 ( ) #$】  P 3 2 1 . ?7MrsK, 45 ??|~?? R* } ?



 

??Y, ???R?"nBR0?, 45 ?? ?"° p?, ??2ZBR0?, 45?? ? |~?? R* }????. ^ n ? ?, ? ?] ??? ?, 45 ?? &?Y. 2 . 3v?. [ 8 , 1 2 ) , [ 1 3 , 1 8 ) ; ¤?? 1 }??-: : [ 1 2 , 1 3 ) , [ 1 8 , 2 0 ] . ??-

2 x + 1 -??R. x ( 4 ) ( x ) , R ?L ? O? ?, d- f *M?ó- R 2 x , (-x )=x + 1= d-?M?óK*67B #w f 2 f ( x ) . ( x )= x+ 1-s?R. v?f 2 . ∵f ( x ) ∴f ( x ) ] s ? R, * ? 4 ? L y? ??. ∵g ( x ) ∴g ( x ) ] ? ? R, *?4?L?O ??. 5 ( 1 ) ( 2 ) ?4¤?? 1 v?.

3  1 . 1 , 0 ] 0 , 2 ] 3 ?R?[- ?]  ?R, ?[ ?] } 2 , 4 ] 4 , 5 ] ?R, ?[ ?]?R, ?[ ?]}?R. 4 . , x , x , ( x )- ??: 3q x ∈R rx d- f 1 2 1< 2 1 f ( x )=- 2 x 1-(- 2 x 1 )= 2 ( x x )> 0 , ? 2 1+ 2+ 2- 1 f ( x )> f ( x , ( x )= -2 x+1? R ? ]  v? f 1 2) ?R. 5 . °e? ( ?4?)
 *IJA

!"#$%&'(

【 ( ) 】  P 3 5
3 ( 1 ) ( x )= x + x , R?L ? ?R f *M?ó- R , O? ?, ?67B x ∈R #w 3 f (- x )=(- x ) + (- x )= 3 - ( x+ x )= -f ( x ) . ∴f ( x ) ] ??R. ( 2 ) ^??R*?4?L ? O? ? ??? y ?? é*? 4v?. 4, ¤?? 1 4  1

5  1 【 . 3 】 ( )  1  P 3 9 A% 2 1 . ( 1 ) = x - 5 x - 6*? 4 ¤?? 1 6 ( 1 ) ?R y 5 5 , + ∞, ?]  ?R, ∞ ? v?, ?? - ? 2 2 ]}?R. 2 ( 2 ) = 9-x 6 ( 2 ) ?R y *? 4 ¤?? 1 v?, 0 ] 0 ,+∞ ) ??(-∞, ? ] } ? R, ?[ ?] ?R.

(

]

[

)

!"#)*+,'

【 ( ) 】  P 3 6
4 2 1 . ( 1 ) ( x )= 2 x + 3 x , R? ?R f *M?ó] R , L? O ? ?, d-?M?óK*67B x #w 4 2 4 2 f (- x )= 2 (- x ) + 3 (- x ) = 2 x + 3 x = f ( x ) , v?

6  1 2 . ( 1 ) , x (-∞, 0 ) , x , ??: 3q x ∈ rx 1 2 1< 2 ( x )- f ( x )= x 1- x 1= x x ( x x ) ?f 1+ 2- 1- 2= 1 2 1- 2 ( x + x ) . 1 2 x 0 , x x 0 , ( x )- ^?ow x v? f 1- 2< 2+ 1< 1
2 f ( x )> 0 , ( x )>f ( x ) . ( x )=x +1? ?f v? f 2 1 2 (- 0 ) ?]?R. ∞, ( 2 ) , x 0 ) , x , ??: 3q x ∈ (-∞, rx ? 1 2 1< 2 x - x 1 1 1 1 1 2 f ( x )- f ( x )= 1- - 1+ = - = . 1 2 x x x x x x 1 2 2 1 1 2 x 0 , x x 0 , ( x ) -f ( x )< ^?ow x v? f 1- 2< 1 2> 1 2 1 0 . ( x ( x ) , ( x )=1- ? L] f v??R f 1)<f 2 x 2 2 2 2

( x )= 2 x+ 3 x -s?R. ?R f 3 ( 2 ) ( x )=x - 2 x , R ?L ?R f *M?ó] R , (- x )= ?O??, d-?M?óK*67B x #w f 3 3 (- x )- 2 (- x )=- ( x- 2 x )=-f ( x ) , v??R
3 f ( x )= x - 2 x -??R. ( 3 ) f ( x ) x | x } , { x | x } *M?ó-{ ≠0 ≠0 ?L? , (-x )= O??. d-?M?ó K *67B x #w f 2 2 2 (- x ) + 1 x + 1 x + 1 = =- =- f ( x ) . ( x )= v? f - x - x x







(- 0 ) ?]}?R. ∞, 3 . 0?, y =m x +b ? m< ] R ?*  ?R; ? m> 0 y = m x + b ?, ] R?*}?R, ??¤Z: , x , x , ( x )-f ( x )= 3q x ∈R rx ?f 1 2 1< 2 1 2 m x + b - m x - b = m ( x - x ) , x - x < , ^?o w 1 2 0 1 2 1 2 0?, m ( x x )> 0 , ? m< 1- 2 ( x )- f ( x )> 0 , ( x )> f ( x ) . v? f ?f 1 2 1 2 ( x )= m x + b v? f ? R?]?R. 0?, y =m x +b ?V??, ? m> ] R ?* } ?R. 4 . |??L 7 C?, ?? ?L??*7B?$ 7v?. *?4¤?? 1

0 ) ?]}?R.
-*.&+

   8  1 5 . 0 5 0+?, ?681*9?.- 4 ????* 0 70 5 0+. 9??°p, °p9??- 3 6 . ( x ) (- x )= d- f ] R?*??R, v?w f - f ( x ) . f ( x )=x ( 1+x ) , < 0 d-? x ≥0?, v?? x - x > 0 , (- x )= (- x ) ( 1 - x )=- x ( 1 - x ) , ?, v? f ( x )= -f (-x ) =x ( 1-x ) , ( x )= v? f ? f x ( 1+ x ) , x , ≥0 8v?. ?4¤?? 1 x ( 1- x ) , x < 0 . B 1 . ( 1 ) ( x ) 1 ] 1 , ?R f ?(- ?] ?R, ?[ ∞, + g ( x ) 2 , 4 ] ?]}?R, ?[ ?]}?R. ∞) ( 2 ) f ( x ) 1 , g ( x ) . *°e?- - *°e?- 0 2 2 . , SF???¤*?- xm o ? .E - ym , 2 3 0 - 3 x 3 0 - 3 x 3 ( x- 1 0 x ) , = x · m =- = ?NLM y 2 2 2 2 - 3 ( x - 5 ) + 7 5 . x < 1 0 . = 5?, y ?) 0< v?? x 2 7 . 5 . w°p? 3 ?: ?- 5m? ? $ ? v@ § * ???¤.E 2 7 . 5m . °p, °p.E] 3 3 . ( x ) 0 ,+∞ ) s?R f ?( ?]  ? R, LM f ( x ) 0 )?]}?R, ?(- ??¤Z: ∞, x 0 , x x 0 , ( x ) ox ?- d-?R f 1< 2< 1 >- 2> ( 0 , + ) , ? ∞ ?]?R (- x )< f (- x ) . ( x ) v? f ?d- f ]s?R, 1 2 (- x ) = f ( x ), f ( - x ) = f ( x ) . v?f 1 1 2 2 ( x )<f ( x ) , ( x ) L] f v?s?R f ? (-∞, 1 2 7  1

{

A%( )  P 4 4 1 . ( 1 ) A = {- 3 , 3 } . ( 2 ) B= { 1 , 2 } . ( 3 ) C= { 1 , 2 } . 2 . ( 1 ) B* ? G? ?L ¨ '(*O%&H ? A iH. ( 2 ) 3c m?L ¨ '(*O%&? O- D?, FG*D. 3 . P | P A= P B } B d-?L'({ *O%&H ? A P | P A= P C } *?G?iH, ?L'({ *O%&H ? A C*? G ? i H, P| P A=P B } v??L'({ ∩ { P | P A= P C } *O"??F*?B?O*IJêK, B C*??. ?]△A 4 . {- 1 , 1 } , '( A= ? ( 1 ) = 0?, B= B ; ?a ?, ?}, ?A 1 1 ( 2 ) B= , , ?a ≠0?, ?? B ?A ?? ∈ a a 1 1 A , 1q = 1 . =- 1q a = 1 . ü? =- ?a a a , a , - 1 , 1 . ????, °B ?A *??- 0 2 x - y = 0 , = 5 . A { ( 0 , 0 ) } ; x , y ) ∩B= ( 3 x + y = 0 2 x - y = 0 , A = x , y ) ∩C= ( ?; 2 x - y = 3 3 9 - ( A ) B )= ( . 0 , 0 ) , , ∩B ∪( ∩C 5 5 6 . ( 1 ) { x | x } . ( 2 ) { x | x } . ≥2 ≥4r x ≠5 1- 2 a 7 . ( 1 ) f ( a )+ 1= + 1= ( a 1 ) . ≠- 1+ a 1+ a ( a + 1 ) a 1- ( 2 ) f ( a + 1 )= =- ( a 2 ) . ≠- 1+ ( a + 1 ) a + 2 2 2 1 + (- x ) 1 + x 8 . ( 1 ) f (- x )= f ( x ) . ??: 2= 2= 1 - (- x ) 1 - x 12 1 + 2 2 1 x x + 1 1 + x ( 2 ) f = = 2 =- 2 =- f ( x ) . x 12 x - 1 1 - x 1 - x 2 9 . ( x )= 4 x - k x - 8*?4*??? ]G ?R f k = . Hx 8 k k 0 , 0q k 6 0?, f ( x ) ? ≤5q ≥2 ?k ≤4 ≥1 8 8 5 , 2 0 ] ?[ ?]±? ?R. v?QR k * q ? rs { k | k 0qk 6 0 } . ≤4 ≥1 1 1 - 2 1 0 . ( 1 ) y = x = 2. = f ( x )= 2, ( x ) oy ?f * x x 0 ) 0 ,+∞ ) , M?ó-(- ∪( ?L ? O? ?, r ∞, 1 1 f (- x )= f ( x ) . ∴f ( x ) ]s?R. 2= 2 = (- x ) x

{ }

{

{

}

{

{

}

{

(

)}

( )

( ) ( )



 

- 2 ( 2 ) = x ?R y *?4?L y ???.

( 3 ) , x 0 , + , x , 3q x ∈( rx ∞) 1 2 1< 2 ( x ( x ? f 1) - f 2) = ( x x ) ( x x ) 2- 1 2+ 1 . 2 2 x · x 1 2 ∵0< x x , 1< 2
2 2 ∴x x 0 , x x 0 , x ·x 0 , 2- 1> 2+ 1> 1 2> 2 2 x x 1 1 2- 1 - = 2 2 2 2 = x x x ·x 1 2 1 2

( x x ) ( x x ) 2- 1 2+ 1 ∴ > 0 , ( x )- f ( x )> 0 . ?f 1 2 2 2 x ·x 1 2 ∴f ( x ) 0 , + ?( ?]?R. ∞) ( 4 ) ( 3 ) , f ( x ) 0 ) ? ?? ?(- ?]}?R. ∞, B( ) !" P 4 4 1 . ( 1 ) I?)??~?!-RV[?~.
'()* 1 ) 8=>?@A :;( <2 +,-.)* 8=CD@A?E B2 +,'-.1 U BCD F G @ A ' > ?+,'-.1 A BCD H I @ A ' > ?+,'-.1 B BCD J K @ A ' > ?+,'-.1 C

9 #$ 1 ( 4 ) u?RV??. 9?? n ( U )= n ( A )+ n ( B )+n ( C )- ^?? 1 n ( A )- n ( A )- n ( B )+ n ( A ) . ∩B ∩C ∩C ∩B ∩C ( U )= 2 8 , n ( A )= 1 5 , n ( B )= 8 , n ( C )= d- n 1 4 , n ( A )= 3 , n ( A )= 3 , n ( A )= 0 , ∩B ∩C ∩B ∩C 8= 1 5+ 8+ 1 4- 3- 3-n ( B )+ 0 . v? 2 ∩C ? ( B )= 3 . ?n ∩C ( B )=n ( B )+n ( C )-n ( B )= 8+ ?n ∪C ∩C . 1 4- 3= 1 9 ( B ) )=n ( U )-n ( B )= 2 8- v? n 瓓 ∪C ∪C U( . 1 9= 9 ( 5 ) ????. : ? ?????G?????*w 3?, ??? ??7???*w 9?. 2 2 2 . ∵'( A = { x x = a } ∴x =a ∈R| ]??'(, ∴Δ= 0- 4 (-a )= 4 a , ∴a . wQRS, ≥0 ≥0 ?a a | a } . *q?rs]{ ≥0 3 . 0v?, A∪B )= { 1 , 3 } , ¤?? 2 d-瓓 U( { 2 , 4 , 5 , 6 , 7 , 8 , 9 } . v? A ∪B= )= { 2 , 4 } , { 5 , 6 , 7 , 8 , 9 } . ?A ∩( 瓓 v?B= UB

CDFG@A'>?

CDHI@A'>?

CDJK@A'>?

>LCDFGMHI@A'>? A ∩B >LCDFGMJK@A'>? A ∩C >LCDHIMJK@A'>? B ∩C >LCDNO@A'>? PCDFG;O@A'>? A ∩B ∩C B ) 瓓 ∩C U(

  ( 2 ) · ?) 0 *??{RV [? ~??, { n ( P ) ??'( P)*+,.
'()* 1 ) 8=>?CD@A :;( <2 1 5QCDFG@A 8QCDHI@A 1 4QCDJK@A >LCDFGMHI@A'5 3Q >LCDFGMJK@A'5 3Q >LCDHIMJK@A'Q R5Q>LCDNO@A PCDFG;O@A +,-.)* n ( U )= 2 8 n ( A )= 1 5 n ( B )= 8 n ( C )= 1 4 n ( A )= 3 ∩B n ( A )= 3 ∩C n ( B ) ∩C n ( A )= 0 ∩B ∩C n ( B ) ) 瓓 ∪C U(

0 #$ 2 4 . f ( 1 )= 1× ( 1+ 4 )= 5 , f (- 3 )=- 3× (- 3- 4 )= 2 1 . ( a + 1 ) ( a + 5 ) , a 1 , ≥- {( a + 1 ) ( a - 3 ) , a <- 1 . x+ b x x x+ x+ + 5 . ( 1 ) f ??: ( 2 ) =a( 2 ) +b=a 2 ( a + 1 )= f
1 2 1 2 1

a x b f ( x )+ f ( x ) 2+ 1 2 = . 2 2 ( 2 ) g ??: ?= a + x , ( x2 ) +b
1 2

+ x ( x+ x+ 2 xx)+ ( x2 ) =1 4
1 2 2 1 2 2 12

  ( 3 ) `@u???*??, ?'(?*???? 9??. {?? 1



g ( x )+ g ( x ) 1 1 2 2 2 = [ ( x a x b )+ ( x ?= 1+ 1+ 2+ 2 2 x+ x 1 2 2 a x b ) ]= ( x+ x)+ a 1 2 + b . 2+ 2 1 2 2 1 2 2 1 2 2 1 x+ x+ 2 x x ) - ( x+ x ) =- ( x- d- ( 4 1 2 12 2 1 2 4 1 1 2 2 1 2 2 2 x ) , x+ x+ 2 x x ) x+ x) , ≤0 ? ( ≤ ( 2 1 2 4 1 2 2 1 2 g ( x )+ g ( x ) x x 1 2 1+ 2 . v? g ≤ 2 2

槡 V?R?x*???, ?2 ]7B_M*QR.



(

)

!"#)*+,'

【 ( ) #$】  P 5 4
1 3 3 4 3 1 -2 1 - 2 = a 4 = a; 1 . a a a 3 =3 . 槡; 槡 a 5 = 5 3; 2 a a 槡 槡 2 3 3; 4; 2 . ( 1 ) =x ( 2 )槡 =( a+b ) x ( a + b ) 槡 2 4 3; ( 3 )槡 = ( m- n ) ( 4 )槡 ( = ( m- ( m- n ) m- n ) 3 5 1 5 m 2 3 3 - 6 5 2; 2 = n ) ; ( 5 )槡 p | q ( 6 ) = m m2. p q =| m 槡 3 2 3 2 4 3

(

)

6 . ( 1 ) ( x ) b , - a ] ??R f ?[- ??]  ?R. : ??¤Z b < x x a , <- x x b . o- ?a 1< 2 <- 2 <- 1< ( x ) a , b ] ( 0< a <b ) d- f ?[ ?]  ?R, v? f (- x ) > f ( - x ) . 2 1 ( x ) (- x )=- f ( x ) , ?d- f ]??R, v? f f ( x )>- f ( x ) , ( x )> f ( x ) . L] - ?f 2 1 1 2 ( x ) b , - a ] v? f ?[- ?]?R. ( 2 ) ( x ) b , - a ] s?R g ?[- ?]?R. ?? ¤Z: b < x x a , <- x x b . o- ?a 1< 2 <- 2 <- 1< ( x ) a , b ] ( 0< a < b ) d- g ?[ ?]}?R, v? g (- x )< g (- x ) . 2 1 ( x ) (- x )= g ( x ) . ?d- g ]s?R, v? g g ( x ) > g ( x ) . L] 1 2 ( x ) b , - a ] v? g ?[- ?]?R. 7 . on?9??、 ?.v?- x +, ? ?n ? ? ?- y +, ? , 0 5 0 0 , 0 ≤x ≤3 ( x - 3 5 0 0 )× 3 %, 3 5 0 0 < x 0 0 0 . ≤5 y = 4 5 + ( x - 5 0 0 0 )× 1 0 %, 5 0 0 0 < x 0 0 0 . ≤8 3 4 5 + ( x - 8 0 0 0 )× 2 0 %, 8 0 0 0 < x 2 5 0 0 . ≤1 0 3+, ^Ln?79 ? ?A ??? - 3 ??w 50 0 0< x 0 0 . ≤80 0 3 = 4 5 + ( x - 5 0 0 0 )× 1 0 %, = 75 8 0 . ü? 3 u? x 8 0+. v?n?79?*??、 ?.- 75

3 . ( 1 )

2 1 6 ; ( ) [ ( ) ] ( ) =3 4 3 3 2 ) 2 3 ×槡 × ( 3× ( 1 . 5×槡 1 2= 2× 3 ×( 槡 2) =
3 6 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 5

3 62 = 4 9



6 7



3 2

6 7



+ + 2 1 - + 6 = 3 3 × 2 3 6 = ) 2 3 2× 3= 6 ; 2 + - - 2a 4a 8 = 2 4 8 = 8; ( 3 ) a a a - 3 ( 4 ) 2 x 1



x - 2 x ) =x (1 2
1 3 2 - 3

1 1 - + 3 3

- - 3 3 = - 4 x





4 1- . x
 *O/./>?AB

!"#$%&'(

{

'K)*89LM./N
 *O/./
 *O/-O/P2<=

!"#$%&'(

【 ( ) !"】  P 5 3
槡 3 jV?R? 2 *??: ]7 ? ?槡 *c? #? ?- ? R, ? 2- ? R*w V? R ? x? ? 7 ? ? 3

【 ( ) )*】  P 5 4 ?. 【 ( ) !"】  P 5 5 ?. 【 ( ) )*】  P 5 6 ( 1 ) ??: vw? 4 #XL x ? ?E, ??? j ???. ( 2 ) 0 , 1 ) . vw?4#2O( ( 3 ) a < 1?, ? 0< ?R? 4?×Z?67, ? > 1?, ?R±??; ?a ?R? 4?× ? ?67, ??R±??}. ( 4 ) ?|? 0 x q ?7BR?, ??*?R? y < 0 *pe??: ?x ?, ?R? y |?R a * } p? > 0 e; ?x ?, ?R? y |?R a *}p?}p. 1 x x ( 5 ) = a = ( a> 0r a ) ?R y =y ≠1 * a ?4?L y ???. 【 】 ) )* (  P 5 8 ?.

( )

!"#)*+,'

3 %?槡 *2Y#? ?- ? R, ? 2- ? R*w V? 2 *?Q ? ?]Z?Bw R?xj??# * ?H,
3 槡

【 ( ) #$】  P 5 8 1 . 1v?. ¤?? 2



 

1  2 2 . ( 1 ) { x | x } ; ( 2 ) { x | x } . ≥2 ≠0 x ? 3 . y = 2 ( x ) . ∈N 【 . 1 】 ( )  2  P 5 9 A%
4 1 . ( 1 )槡 = 1 0 0 ; 1 0 0 5 2 )槡 =- 0 . 1 ; ( (- 0 . 1 ) 2 ( 3 )槡 ( = 4- ; 4 ) π π- 6 ( 4 )槡 = x - y . ( x - y ) - 2 - 6 2· a 2· ( 4· ( 4 = 2 . ( 1 ) a ) b ) ? t =b - - + 0 0 2 2· a 2 2 = b b ·a = 1 ; 2) 2·[ 2) 2] 2·[ 2) 2] 2 = ( 2 ) ( a ( a ( a ?t = + + 4 8 8 = 2; a a - - ( 3 ) ? t =m2 · m3 · m4 · m 6 · m 4 = 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 3 1 1 1 6 5 4

y = a ( 1+ p % ); á3*: …… x x y = a ( 1+ p %) ( 0 ) . 3*: ≤x ≤m x 7 . ( 1 ) ∵?R y = 3 ? R?] } ?R, . 8> r0 0 . 8 0 . 7 0 . 7 , ∴3 > 3 . x ( 2 ) ∵y = 0 . 7 5 . 1< ? R ?]  ?R, r -0 - 0 . 1 0 . 1 0 . 1 , ∴0 . 7 5 > 0 . 7 5 . x ( 3 ) ∵y = 1 . 0 1 . 7< 3 . 5 , ? R?]}?R, r2 2 . 7 3 . 5 ∴1 . 0 1 < 1 . 0 1 . x ( 4 ) ∵?R y = 0 . 9 9 . 3< ? R?]?R, r3 3 . 3 4 . 5 . 5 , ∴0 . 9 9 > 0 . 9 9 . 4 x m n 8 . ( 1 ) ∵ ? R y=2 ? R ? ? }, ? 2 <2, ∴m< n . x m n ( 2 ) ∵y = 0 . 2 . 2 < 0 . 2 , ? R ? ?, ? ∵0 ∴m> n . x ( 3 ) ∵ ? R y=a ( 0<a<1 ) ? R ? ? , ? m n ∵a < a( 0< a < 1 ) , ∴m> n . x ( 4 ) ∵ a>1?, ? R y=a ? R ? ? }, ? m n ∵a > a, ∴m> n . 9 . 4* Y?0 P=?? t ??4 ? % ?K? 1 *?Ru+t- P=
9 × 57 3 0 57 3 0





1 1 1 5 1 + + - - 2 3 4 6 4 1

0 = m = 1 . 1

( )

1 2

t 57 3 0

. ??? à2á B “ F

2 槡 3≈1 2 ≈2 3 . ( 1 ) 5 . 7 1 0 ; ( 2 ) 8 . 3 . 8 8 1 ; ( 3 ) 3 ≈ π 4 . 7 2 9 ; ( 4 ) 2 ≈8 . 8 2 5 . + + 3 4 1 3. 2= 2 = 4 . ( 1 ) a a1 a ?t = + - 3 4 6 = 1 2 ( 2 ) a a . ?t = 4 1 3 x 1 2 - 1 2 4 - 9 3) ·( 4) = ( 3 ) ( x y x ·y = 9. ?t = y 2 1 1 1 3 + - + 3 3·b 3 3 =- ( 4 ) 4 × - ·a 6 a . ?t = 2 2 3 5 7 1 3 7 4 + 9 + 7 5

4* ? 0 - P= ??” *, ??4?%?K*? 1 19 . 0 0 2 . ≈0 2 ?: ???à2áB“ F??” *, ??4?%? 4*?0{ - ?? <? 0 * 2 ‰, v? c $ K*? 1 4*??. {7?*fO?????"? 1 B 2 x - 7 4 x - 1 1 . a , ?L a > > 1?, x - 7> 4 x - 1 , <- 3 ; ?a w2 u? x a < 1?, x - 7< 4 x - 1 , >- 3 . ? 0< w2 u? x > 1?, x x | x <- 3 } ; v?, ?a *q?rs-{ a < 1?, x x | x >- 3 } . ? 0< *q?rs-{

( )

1 2



( )

(

)

( 5 ) 1 6 ) ? t =( 1 (2 ) 5
3 - 2

3 - 2

2 - - 6 - ·( s ) 2·( t ) 2·





96 3 2 5 t r - 4 - - 3 3 - 3 9 6 1 ·( r )2= 4 × 5 ·s ·t ·r = 3. 6 4 s 1 1 1 1 2 2

- + - + + 0 4 2 4 · y 3 3 3 =2 ( 6 ) 4 ·x 4 x · ? t =2 y = 2 4 y . 2 - 2 - 2) - 4) = 2. ( 7 ) ( 2 x ( 3 y 4 x - 9 y ?t = 1 1 1

- 2 - 2 2 + 2, 2 + 2) = 2 . ( 1 ) = x x ( x x oy LM y = - 1 x + x + 2 . - 1 + x = 3 , = 5 . ^L x v? y 槡 2 - 2 - 1 2 ( 2 ) = x + x , = ( x + x )- 2 . oy LM y - 1 + x = 3 , = 7 . ^L x v? y 2 - 2 - 1 ( 3 ) x+x ) ( x- o y=x -x , L M y=( - 1 x ) . - 1 2 2 - 2 - x )= x - 2 + x = 5 , =± 3 5 . ?(x v? y 槡 3 . ???.- a +. 1?**?8?- y a + a ·r = a ( 1+ r ) , 1= 2?**?8?- y = a ( 1+ r ) + a ( 1+ r ) r = 2 2 a ( 1+ r ) ,









( 8 ) 2 ·x ·y = 2 x y. ?t = 3 - x 5 . ( 1 ) y = 2 ; *M?ó] R 2 x + 1 2 ) y = 3 ; ( *M?ó] R x 15 ( 3 ) y = ; *M?ó] R 2

1 1 1 + + 4 4 2

1 2 - + 3 3

1 3

( )

( 4 ) = 0 . 7 w??, , ?y ?x ≠0 ??R*M? x | x } . ó]{ ≠0 6 . , . o3R- x ?*50- y ?0 ≤x ≤m y = a ( 1+ p %) ; 73*:

1 x

1 0

3 3?**?8?- y a ( 1+ r ) , 3= …… x x = a ( 1+ r ) . ?**?8?- y = 10 0 0 , r = 2 . 2 5 %, x = 5$W?t? Ia 5 5 y = 10 0 0× ( 1+ 2 . 2 5 %) = 10 0 0× 1 . 0 2 25 ≈ 11 1 8 . = ?: ?8? y |?? x ?!*?Ru+t- y x a ( 1+ r ), 5?**?8?{- 11 1 8+. 3 x + 1 - 2 x 4 . ( 1 ) ∵y y , ∴a = a , ∴3 x + 1=- 2 x , 1= 2 1 ∴x =- . 5 3 x + 1 - 2 x ( 2 ) y >a , ^y ? 0<a<1?, 1> 2? a 1 3 x + 1<- 2 x <- ; ?x 5 1 > 1?, 3 x + 1>- 2 x >- . ?a ?x 5

2 x y 2 2 2 ) l g = l g ( x y )- l g z = l g x + l g y - l g z = l g x + ( z

2 l g y - l g z ;
3 x y 1 3 3 ( 3 ) l g = l g ( x y )- l g =l g x +l g y - l z = g z 槡 2 z 槡

1 x + 3 l g y - l z ; g l g 2 x 1 2 2 槡 ( g 4 ) l g l g -l g ( y z )= l x -l g y -l g z = x 槡 2 = 2 y z 1 l g x - 2 l g y - l g z . 2 2 . ( 1 ) 7 ; ( 2 ) 4 ; ( 3 )- 5 ; ( 4 ) 0 . 5 . 3 . ( 1 ) l o g 6- l o g 3= l o g 2 2 2 6 = l o g 2= 1 ; 2 3

( 2 ) l g 5+ l g 2= l g ( 5× 2 )= l g 1 0= 1 ; ( 3 ) l o g 3+ l o g 5 5 1 1 = l o g = l o g 1= 0 ; 5 3× 5 3 3

 *Q/./
 *Q/-Q/<=

(

)

4 ) l o g 5- l o g 1 5= l o g ( 3 3 3 . - 1

5 1 - 1 3 = = l o g = l o g 3 3 1 5 3

!"#$%&'(

【 ( ) !"】  P 6 2 ?. 【 ( ) )*】  P 6 4 ?. 【 ( ) )*】  P 6 6 o g b = n , ( a> 0 , , b > 0 ) , ol ? a =b ra ≠1 ? a n ( c >0 , ) o g a = rc ≠1 - ? * ? R, ?l éq? c c l o g l o g b b c c b , ∴n l o g a = l o g b . ∴n = , o g b = l o g . ?l c c c a l o g a l o g a c c
!"#)*+,'


c l g a l g 4 . ( 1 ) = 1 ; ?t = · l g a l g c l g 3 l g 4 l g 5 ( 2 ) l o g 3 ·l o g 4 ·l o g 5 ·l o g 2= · · · 2 3 4 5 l g 2 l g 3 l g 4 l g 2 = 1 ; l g 5 l g 3 + (l g 4 l g 3 l g 3 l g 2 l g 2 l g 3 l g 2 l g 2 + + =( + )( l )= 2 l g 2 3 l g 2 g 3 2 l g 3 g 3 l l g 2) ( l g 3) ( 3 ) ( l o g 3+l o g 3 ) ·( l o g 2+l o g 2 )= 4 8 3 9
2 3

【 ( ) #$】  P 6 4 1 . ( 1 ) 3 =l o g 8 ; ( 2 ) 5=l o g 3 2 ; ( 3 )- 1=l o g 2 2 2 ( 4 )- 1 1 = l o g . 2 7 3 3
2 3

3 l g 3+ 2 l g 3 2 l g 2+ l g 2 5 l g 2 5 l g 3 3 · · = = . 6 l g 2 2 l g 3 6 l g 2 2 l g 3 4 1 ; 2
 *Q/./>?AB

!"#$%&'(

【 ( ) )*】  P 7 1 =l o g x = ??7±h?) ijk ??R y 5y 2 l o g x 2 ( 1 ) , 1?, *?4, ¤?? 2 ?? ? ?: ? a> 3 < ?R?p, ?4?è# x ?. S??????, ?0 a < 1 , , x . , ? ?R?e ?4?è# ? 8{Z7?é ? ?u?êRê?、 ?RcK?lm?Rpe*??.

1 1 - 2 2 . ( 1 ) 9 = 3; ( 2 ) 1 2 5= 5; ( 3 ) = ; ( 4 ) = 2 8 1 4 - 4 3 . x 2 3 . ( 1 ) = l o g 2 5 , 2 5= 5 , = 2 ; ox ?5= v? x 5 1 1 -4 x 2 , ( 2 ) = l o g , =- 4 ; ox ? 2= = v? x 2 1 6 1 6 x 3 ( 3 ) g 10 0 0 , 0 =10 0 0=1 0 , o x=l ?1 v? x = 3 ; x - 3 ( 4 ) =l g 0 . 0 0 1 , 0 = 0 . 0 0 1= 1 0 , ox ?1 v? x =- 3 . 4 . ( 1 ) 1 ; ( 2 ) 0 ; ( 3 ) 2 ; ( 4 ) 2 ; ( 5 ) 3 ; ( 6 ) 5 . 【 ( ) #$】  P 6 8 1 . ( 1 ) l g ( x y z )= l g x + l g y + l g z ;

2  2

1 1

 

= l o g x ( a> ???, ??7±h?)ijk? y a 1 ) =l o g x ( 0<a< 1 ) 2 ( 2 ) , 5y *? 4, ¤?? 2 ? a = 1·? 7 m*?4??74?*?é]: ?GH x 4 ? i &?B ? ó, 6B ? ó ì ?R?R* ? R# , C , C , C ?¤ C ]^???í?} p. 1 2 3 4 ij ?? y = l o g x , y = l o g x , y = l o g x , y = l o g x , ??w a a a a a 4> a 1> a a 0 . 3> 2> 1> 【 ( ) )*】  P 7 3 ?.
1 2 3 4

!"#)*+,'

【 ( ) #$】  P 7 3 1 . =l o g x ?R y 5 3 1x y = l o g *? 4 ¤??


a 2 l g 2 2 = . ( 2 ) ?t = l g 3 b b l g 3+ 2 l g 2 = 2+ . ( 3 ) ?t = l g 2 a ( 4 ) l g 3- l g 2= b - a . ?t = 5 . ( 1 ) ∵l g x = l g a + l g b , ∴l g x = l g ( a b ) , ∴x = a b . m ( 2 ) ∵l o g x=l o g m -l o g n , ∴l o g x=l o g , a a a a a n m ∴x = . n 3 3 n n ( 3 ) ∵l g x = 3 l g n - l g m , ∴l g x = l g , ∴x = . m m ( 4 ) ∵l o g x = a 1 b 槡 l o gb -l o g c , ∴l o g x =l o g , a a a 2 a c

2 3v?. ê?O: ?4# ? y? * ? ?, #2O ( 1 , 0 ) . y = l o g x c?O: * 3 1 y =l o g ?4]? ? *,


x *?4]Z?*.


3  2

1x y=l o g x? y=l o g ??: * ? 4 ? L x? 3

??. 2 . ( 1 ) (- 1 ) ; ( 2 ) ( 0 , 1 ) 1 , + ; ∪( ∞, ∞) 1 ( 3 ) - ( 4 ) [ 1 , + . ∞, ; ∞) 3

(

)

3 . ( 1 ) l g 6< l g 8 ; ( 2 ) l o g 6< l o g 4 ; 0 . 5 0 . 5
20 20 3 ) l o g . 5> l o g . 6 ; ( 4 ) l o g 1 . 6> l o g 1 . 4 . ( 1 . 5 1 . 5 3 3

【 . 2 】 ( ) $% 2  P 7 4 A& 1 . ( 1 ) x=l o g 1 ; ( 2 ) x=l o g 3 4 1 ; ( 3 ) x=l o g 2 ; 4 6

4 ) x = l o g 0 . 5 ; ( 5 ) x = l g 2 5 ; ( 6 ) x = l o g 6 . ( 2 5 1 x x x x 2 . ( 1 ) 2 7= 5 ; ( 2 ) 7= 8 ; ( 3 ) 3= 4 ; ( 4 ) = 7; 3
x x ( 5 ) 0 . 3= 1 0 ; ( 6 ) . 3= e 槡

b 槡 . ∴x = c 6 . D P? 1 9 9 93 ?? ? ò ? ox 3*>?* G x 1+ 0 . 0 7 3 ) = 4 , = l o g 4 0 . ó, ?( u? x ≈2 1 . 0 7 3 03*>?* G D P? 1 9 9 93* ?? ? ?: {2 ò?ó. 7 . ( 1 ) , ∴M?ó] - ? ?Rw? ?, ? x>0 ( 0 , + . ∞) 4 x - 3> 0 , ( 2 )^ l o g 4 x-3 )≥ 0 ? ? 0 . 5( 4 x - 3 ≤1 3 x > , 3 3 4 ? < , 1. x , ∴?R*M?ó] ≤1 4 4 x ≤1 8 . ( 1 ) ∵ ? R y=l o g x? ( 0 ,+∞ ) ?]}? 3 o g m< l o g n , ∴m< n . ?∵l R, 3 3 ( 2 ) ∵?R y = l o g x 0 , + ?( ?]?R, ∞) 0 . 3 o g m > l o g n , ∴ m < n . ?∵l 0 . 3 0 . 3 ( 3 ) ∵0< a < 1 , ∴ ?R y =l o g x 0 , +∞ ) ?( ? a o g m< l o g n , ∴m> n . ]?R, ?∵l a a ( 4 ) ∵ a> 1 , ∴ ?R y =l o g x 0 ,+∞ ) ?( ?] a o g m > l o g n , ∴ m > n . }?R, ?∵l a a 9 . = 1 20 0 0m/ s , 0 0 l n °??*°p`B v ? 20

{

{

(

]

3 . ( 1 ) l o g ?t = a 2× ( 2 ) l o g ?t = 3 ( 3 ) l g ?t =

(

1 = l o g 1= 0 . a 2

)

M =1 20 0 0 , l n =6 , 1+ =e, ( 1+ M ( 1+M m) m) m


1 8 = l o g 9= 2 . 3 2
- 2

1 ÷ 2 5 g = l g 1 0 (1 ) =l 4 1 0 0

=- 2 .

2 ( 4 ) l o g ( 1 0 × 0 . 2 5 )= l o g 2 5= 2 . ?t = 5 5 2 3 4 1 8 ( 5 ) o g 2 5 -l o g 6 4 =l o g 5 -l o g 2 = ?t =l 5 2 5 2 4- 1 8=- 1 4 . 4 ( 6 ) l o g ( l o g 1 6 )= l o g ( l o g 2 )= l o g 4= ?t = 2 2 2 2 2 2 l o g 2 = 2 . 2 . ( 1 ) l g 2+ l g 3= a + b . 4 ?t =

M 0 2 . ≈4 m 0 2??, ?: ??÷¨0{-?? ¨ 0 * 4 ?? 2k m/ s . *°p`B?? 1 1 0 . ( 1 ) = 1* ??, ? ? R - pL 1?, ?x ? =l g x , R?p*?4? ? Z E. v?, ① ???R y = l o g x , = l o g x . ②???Ry ③???R y 5 2 ( 2 ) 4v?. ¤?? 2 ( 3 ) 2 4 y = l o g x , y = l o g x , y = l g x ü?? )?b, 2 5 1 1 1 = l o gx , y =l o gx , y =l o gx ij=y *? 4 ?L x
2 5 1 0

1 2

???.

g ( x ) . ( x )+ g ( x ) 1 , 1 ) v?f ](- ?*s?R. 5 . ( 1 ) y =l o g x , y =l o g K, Z[?R]?R 2 0 . 3x 2 ) y = 3, y = 0 . 1 K, ?R;( Z[?R]?R?R.
x x

 *P./
!"#$%&'(

4 #$ 2 g 4 l g 9 l g 2 5 l × × = 1 1 . ( 1 ) l o g 2 5 ·l o g 4 ·l o g 9= 2 3 5 l g 2 l g 3 l g 5 2 l g 5 2 l g 2 2 l g 3 × × = 8 . l g 2 l g 3 l g 5 l g b l g c l g a ( 2 ) l o g b ·l o g c ·l o g a = · · = 1 . a b c l g a l g b l g c 1 27 0 0 o g 1 2 . ( 1 ) 27 0 0 , = l , w O= ?v u? 2 3 1 0 0 v = 1 . 5 . . 5? / ?: ?ù*?`- 1 ú. 1 O ( 2 ) = 0 , o g , 1 0 0 . = 0 wv ? l u? O= 0 0 2 31 0 0B±X. ?: 7?ù?ü?*??0- 1 B& 1 x - x x 1 . l o g 4=1? 4 =3 , 4 = , ^x L] 4 + 3 3 0 - x 1 = . 4 3 3 2 . 1?, l o g <1? &?; ? a> ? 0<a<1 a 4 3 3 3 o g < 1= l o g a , < , a < . ?, ^l ?a v? 0< a a 4 4 4 3 a < qa > 1. v?QR a *q?rs] a 0< 4

【 ( ) !"】 !" P 7 7 ?. 【 ( ) )*】 !" P 7 8
y = x /01 R
2 y = x 3 y = x 1 2 y = x - 1 y = x





[ 0 , + ∞)

( - 0 ) ∪ ∞, ( 0 , + ∞) ( - 0 ) ∪ ∞, ( 0 , + ∞) S

21 345 675 89:

R S

[ 0 , + ∞) T

R S

[ 0 , + ∞) USUT

( 0 , + ( 0 , + ( 0 , + ( 0 , + 0 , + ∞) ∞) ∞) ∞) ( ∞) V V V ( 1 , 1 ) V *

  【 . 3 】 ( ) $% 2 !" P 7 9
α 1 . , 2 , ov? ? ? R * u + t - y=x IO( 1 α ) 2 2= 2, $ Wu + t)?槡 u? α= . v?v? 槡 2 2( = x x ) . ??R*u+t- y ≥0 2 . ( 1 ) , o?!?R- k  b*g 0`? v = 4 r v = k r ; FG *?Ru+t4 2 ) = 3 , v = 4 0 0$ W?t)w 4 0 0=k × 3 , ( Ir 4 0 0 = . c m*?, u?k v?b12FG- r ? 8 1 4 0 04 = r ; *??t- v g0`? v 8 1 4 0 0 4 2 5 0 0 0 0 3 5= ( 3 ) = 5 v = × 0 8 6 ( c m / s ) . ?r ?, ≈3 8 1 8 1 m?, v??b12*FG- 5c ¨  b*g 3 8 6c m / s . 0`?{- 30 1

{

}

1 0 - 1 2 2 3 . ( 1 ) =1 0 W/ m L 0 l g -1 = ?I ?, I =1 1 0 2 1 0 l g 1= 0 . 1 2 1 2 = 1W/ m L 1 0 l g -1 = 1 0 l g ( 1 0 )= ?I ?, I= 1 02 1 2 0 ( d B ) . L | 0 2 0 } . v??*Rrs-{ ≤L ≤1 I I

- 1 2

(

)

-*.&+

A&( ) !" P 8 2
2 2 = 2 = 1 . ( 1 ) 1 2 1 ( 1 1 ) 1 1 . 1 1 1 - 2

1 0 - 6 2 ( 2 )? I=1 0 W/ m L 0 l g -1 = ?, I =1 1 0 2 6 1 0 l g 1 0 = 6 0 ( d B ) . : 0d B . ? ????A?*- 6 4 . ( 1 ) + 1> 0 , 1-x > 0? - 1<x < 1 . ^x v? ( x )+ g ( x ) 1 , 1 ) . ?Rf *M?ó-(- ( 2 ) , 1 ) ,-x , 1 ) ? 3 ?* x ∈ (-1 ∈ (-1 w f (- x )+ g (- x )= l o g ( 1 - x ) + l o g ( 1 + x ) = f ( x ) + a a

- 6

( 2 )

( )

6 4 4 9




2 2 1 2

(8 7)


7 = . 8

3 1 1 1 - 4 = = 0 ( 3 ) 1 00 0 0 . 0 0 1 . 3 = 3= 4 10 0 0 1 0 4 ( 1 0)

( 4 )

( )

3 5 1 2 5 -3 = 3 2 7 3

( )

2 - 3



(5 3)

- 2

9 = . 2 5

1 3

 

2 .( 1 )? t =
1 1

2 2 2 - 2) + 2 + 2) ( a b ( a b 2 + 2) 2 - 2) ( a b ( a b 1 1 1 1











2b 2 + 2b 2 + a - 2 a b + a + 2 a b 2 a + 2 b . = a a - b - b





(2) ? t



2 - 1 - 1 2 a - 2 a ·a + ( a ) 2 - 1 2 a- ( a )



x y x + y ∴( 1 ) f ( x ) ·f ( y )= 3 ·3 = 3 = f ( x + y ) ; x y x - y 2 ) f ( x )÷ f ( y )= 3÷ 3= 3 = f ( x - y ) . ( x a 1- 1- 8 . ∵f ( x )=l g , ∴f ( a )=l g , ??: 1+ x 1+ a + b b a a b - a - b 1- 1+ . f ( b )= l g , f = l g a b 1+ b 1+ 1+ a b + a + b

(

)

1 a - - 1 2 2 ( a - a ) a a - 1 = =2 . - 1 - 1 1 a+ ( a + a ) ( a - a ) a 1 + a 1 0 l g 2 3 . ( 1 ) ∵l g 2=a , l g 3=b , ∴l o g 5= 1 2 2 = ( 3× 2 ) l g 1- l g 2 1- a . 2= 2 a + b l g 3+ l g 2 ( 2 ) ∵l o g 3=a , l o g 7=b , ∴ 2 3 l g 3 l g 7 , =b , =a l g 2 l g 3

a b a 1- 1- 1- ∴f ( a )+f ( b )=l g +l g =l g · 1+ a 1+ b 1+ a + b a 1- b 1+ a b - a - b = l g = f . a b 1+ b 1+ a b + a + b 1+

(

)

(

)

9 . ( 1 ) o)* ?? y ?L +, AB x *?Ru x = k a. +t- y = 0?, y = 1 9 2 ; = 2 2?, ^????, ?x ?x 1 9 2= k , k = 1 9 2 , y = 4 2 , L] 2 2 u? a . 9 3 . 4 2= k a , ≈0

{

{

3 ( 7× 2 ) l g 3 l g ∴l g 2= , l g 7= b l g 3 ,∴ l o g 6= = 1 45 a l g ( 7× 2 )

l g 3 3 b l g 3+ 3× b + l g 7+ 3 l g 2 a a a b + 3 = = = . l g 7+ l g 2 l g 3 1 a b + 1 b l g 3+ b + a a 4 . ( 1 ) x - 1 , ∴x ???Rw??, ?2 ≠0 ≠ ∴?R*M?ó] x x ≠ 1 , 2

v?)*?? y ?L+, AB x *?Ru + t x = 1 9 2× 0 . 9 3 . -y ( 2 ) = 3 0?, y 2 ; = 1 6?, y 0 . ?x ≈2 ?x ≈6 0 ℃? 1 6 ℃ ?, ?: AB? 3 -. * )* ?? i 2e?? 6 0e?. j- 2 ( 3 ) 5v?. ?R?4¤?? 2

{

1 . 2

}

( 2 ) - ? ? R w ? ?, ? w 1-

( )

1 x ≥ 0? 2 5  2 2 α α 1 0 . ( x )=x , =槡 , ??? o f ?2 u ? α= 2 1 1 - 2. - . ( x )= x 6v?. v? f ??4p?¤?? 2 2 0 , + , ( x ) d- x ∈( v? f -?? ?s?R. ^? ∞) ( x ) 0 , + 4??, ?Rf ?( ?. ∞)

( )

1 x , ∴x , 0 , + . ≤1 ≥0 ???R*M?ó][ ∞) 2 5 . ( 1 ) o g 3 x - 2 ) ^l ≠ 0? 3(

{

3 x - 2> 0 , > ?x 3 x - 2 ≠1 2 <x<1q 3

2 , ∴?R*M?ó] rx ≠1 3 x > 1 .

{x

}

( 2 ) > 0 < 2 , ∴ ?R ?Rw??, ?? 2-x ?x 2 ) . *M?ó](- ∞, 2 ( 3 ) 1- x ) > 0 , ∴x , -??Rw??, ?w( ≠1 ∴?R*M?ó](- 1 ) 1 , + . ∪( ∞, ∞) 6 . ( 1 ) ∵?R?R y = l o g x ( a> 1 ) 0 ,+∞ ) ?( a ∴l o g 7> l o g 6 = 1 , l o g 6 < l o g 7 = 1 , ∴l o g 7> ??}, 6 6 7 7 6 l o g 6 . 7 ( 2 ) ∵l o g o g 3=1 , l o g 0 . 8<l o g 1=0 , . π >l 3 3 2 2 ∴l o g l o g 0 . 8 . π> 3 2
x y 7 . ∵f ( x )=3 , ∴f ( y )=3 , f ( x+y )= ? ?:

6  2 B( )  P 8 3 1 . A  【 ∵A= { y | y = l o g x , x > 1 }= { y | y > 】 2 0 } , B= y y =

f ( x - y )= 3 , 3 ,

x + y

x - y

{

. , x > 1 (1 } ={ y 0<y<1 2) 2}



1 4

∴ A∩ B = { y| y>0 }∩ , . $9 A { y 0<y<1 2}

= { y 0<y<1 2}

1 ( =- l . 9 , P e n 0 u? k LM P= 0 5
1 5

1 5

)t l n 0 . 9



a b 2 . 1  【 2 =1 0 , 5 =1 0 , ∴ a= ' (】  : ;:

l o g 1 0 , b = l o g 1 0 , ∴ 2 5 l g 5= l g 1 0= 1 .

1 1 1 1 + = l g 2+ + = a b l 1 0 l o g 1 0 o g 2 5

0 × l n 0 . 9 l n 0 . 8 1 = 1 0?, P=P e ×1 =P e = v?, ?t 0 0 8 1 %P . 0 1 0e?*cY 8 1 %*45?. ?: ( l )t n 0 . 9 ( 2 ) 5 0 %P 0 %P P e , ? P= w5 0 ?, 0= 0
1 5

= u?t

3 . ( 1 ) , x x , ox ∈Rr x ? 1 2 1< 2 2 2 -x -x f ( x )-f ( x )= a - a = 1 2 2 + 1 1 2 +

l n 0 . 5 3 ( h ) . ≈3 1 l n 0 . 9 5

(



) (




)

0 %??6p{ 3 3 h . ?: 45? 5 ( 3 ) 7v?. ??4p?¤?? 2

x x ( 2 - 2 ) 2 . x 1 ) ( 2 + 1 ) ( 2 +
1 2

x 1



x x 2 < 2, ^x 1< 2 ?? 0<


x 2

x 2 < 0 , 2 + 1> 0 , 2 + 1> 0 . v? 2 - ( x )- f ( x )< 0 , ( x )< f ( x ) . v? f ?f 1 2 1 2

x 1

x 2

x 1

f ( x ) v?? a q3 ?QR?, #-?M?ó? . *}?R 2 =-a+ ( 2 ) (- x )=-f ( x ) , ^f ? a- -x 1 2 + 2 , = 1 . u? a 2+ 1
x x - x x - x e - e e + e 4 . ( x )= , g ( x )= ? ?: ^ f ? 2 2 2 x - 2 x 2 x - 2 x e e - e + e f ( 2 x )= , g ( 2 x )= . 2 2 2 2 ( 1 )[ g( x ) ] -[ f ( x ) ] =

7  2

'R)*./2ST
 *./-UV
 *UV2W-./2XY

!"#$%&'(

(

x - x + e e 2

)





【 ( ) !"】  P 8 6 ?. 【 ( ) )*】  P 8 7 ?.
!"#)*+,'

e ( e- 2 )



- x 2

e- e+ 2+ e 2+ e - = 1 = ; 4 4
x - x x - x e - e e + e · = 2 2

2 x

- 2 x

2 x

- 2 x

2 ) 2 f ( x ) ·g ( x )=2 · (
2 x - 2 x e - e = f ( 2 x ) ; 2

【 ( ) #$】  P 8 8
2 1 . ( 1 ) ( x )=- x + 3 x + 5 , ( x ) wf k ??R f * 8 ( 1 ) , ?4, ¤?? 2 ?= x ? w?BAO, v?E

2 2 3 )[ g( x ) ] +[ f ( x ) ] = (

e ( e+ 2 )
2 x



- x 2



e ( e- 2 ) g ( 2 x ) .



- x 2

e+ 2+ e e- 2 + e e+ e = + = = 4 4 2

2 x

- 2 x

2 x

- 2 x

- 2 x

x+ 3 x + 5= 0 P- w?BcêK*QRS. 2 ( 2 ) 2 x ( x - 2 )=- 3? ! - 2 x - 4 x + 3= 0 , w 2 f ( x )= 2 x- 4 x + 3 , ( x ) 8 k??R f *? 4, ¤?? 2 ( 2 ) , x ( x - 2 )=- 3 ?= x ? 7 wAO, v?EP 2 jQS.
2 2 ( 3 ) x = 4 x - 4?!- x - 4 x + 4= 0 , ( x )= wf 2 x - 4 x + 4 , ( x ) 8 ( 3 ) , k??R f *? 4, ¤?? 2 ?



5 . 2 , 1 5 , = 1?, = ^????, θ θ ?t θ 1 =6 0=
- k 5 2 , 2= 1 5+( 6 2- 1 5 ) e , . 2 4 , L] 5 u? k ≈0 LM - 0 . 2 4 t = 1 5+ 4 7 e . θ

=4 2?, t . 3 ; = 3 2?, t . 2 . v?, ?θ ≈2 ?θ ≈4 . 3m i n . 2m i n ?: /012 2 ?4 *, ?b*AB 2 ℃? 3 2 ℃, 2 ℃. ij- 4 ?bc312" 1 - k t 6 . ( 1 ) e ??, = 0?, P=P ; ^ P=P ?t ? 0 0 t = 5 P= ( 1- 1 0 %) P . ?, 0
- 5 k 1- 1 0 %) P P e , L]w( 0= 0

, 4 x - 4 =x ??w7BAO ( ê8) v?EP x = . w?BêK*QRS 2 2 2 ( 4 ) 5 x + 2 x = 3 x + 5?!- 2 x + 2 x - 5= 0 , w
2 f ( x )= 2 x +2 x-5 , ( x ) k ??R f *? 4, ¤?? 2 2 8 ( 4 ) , x +2 x= ?= x ? w?BAO, v?EP 5 2 3 x + 5w?BcêK*QRS.



1 5

 

7B9O. x - 1 ( x )= e + 4 x - 4?(- + ?d- f ?] ∞, ∞) ( x ) }?R, v? f ? (-∞,+∞ ) ?wríw7B 9O. ( 4 ) 9 ( 4 ) . (- 4 )< 0 , ?R?4 ¤?? 2 d- f f (- 3 )> 0 , f (- 2 )<0 , f ( 2 )<0 , f ( 3 ) >0 , v? f ( x )= 3 ( x + 2 ) ( x-3 ) ( x+4 )+x? (-4 ,-3 ) , 3 , - 2 ) , ( 2 , 3 ) (- ??w7B9O.
 *TKZ@[UV2\]%

!"#$%&'(

【 ( ) 】  P 8 9 ?.
!"#)*+,'

8  2 . ( 1 ) 9 ( 1 ) . ( 1 )= 1> 2 ?R?4¤?? 2 d- f 3 , f ( 1 . 5 )=- 2 . 8 7 5< 0 , ( x )=- x - 3 x + 5? 0 v? f 1 , 1 . 5 ) ( x ) ??( ?w—B 9 O, ?d- f ] (-∞, 3 + ( x )=-x - 3 x + 5? ? ? ?*?R, v? f ∞) ( 1 , 1 . 5 ) ?wr?w7B9O.

9  2 ( 2 ) 9 ( 2 ) . ( 3 )<0 , ?R?4¤?? 2 d- f f ( 4 )> 0 , ( x )= 2 x ·l n ( x - 2 )- 3??? ( 3 , 4 ) v?f ?w7B9O. ( x )= 2 x ·l n ( x - 2 )- 3? ( 2 , +∞ ) ?d- f ? ( x ) 2 ,+∞ ) ]}?R, v? f ?( ?wríw7B 9O. ( 3 ) 9 ( 3 ) . ( 0 )<0 , ?R?4¤?? 2 d- f
x - 1 f ( 1 )> 0 , ( x )= e + 4 x - 4? ? ? ( 0 , 1 ) v?f ?w

【 ( ) 】  P 9 1 1 . ( 0 )=- 1 . 4< 0 , f ( 1 )= 1 . 6> 0 , ^?o?? f ( 0 ) ·f ( 1 )< 0 , ( x ) 0 , 1 ) L]f v?, ?R f ???( K w9O. 3 2 ( x )= x + 1 . 1 x + 0 . 9 x - Z.{áik??R f 1 . 4???( 0 , 1 ) . K*9O 0 , 1 ) 0 . 5 , q??( *)O x { <=? ? = ? 1= f ( 0 . 5 )=- 0 . 5 5 . ( 0 . 5 ) ·f ( 1 )< 0 , d- f v? x ∈ 0 ( 0 . 5 , 1 ) . 0 . 5 , 1 ) 0 . 7 5 , :q??( *)O x {<=?? 2= ( 0 . 7 5 ) . 3 2 . ( 0 . 5 ) ·f ( 0 . 7 5 )< 0 , =?f ≈0 d- f v ( 0 . 5 , 0 . 7 5 ) . ?x ∈ 0 0 . 6 2 5 , 0 . 7 5 ) , x 0 . 6 2 5 , 0 . ?V?? x 0∈ ( 0∈ ( 6 8 75 ) , x 0 . 6 5 62 5 , 0 . 6 8 75 ) . ∈( 0 0 . 6 8 75- 0 . 6 5 62 5 | = 0 . 0 3 12 5< 0 . 1 , ^L | v 0 , 1 ) . 6 56 2 5 . K*9O?q- 0 ???R???( 2 . + l g x - 3= 0 , ( x )= x + l g x - 3 , ?EP? x wf ( 2 ) 0 . 7 0 , f ( 3 ) . 4 8 , {<=??= ? f ≈- ≈0 L] f ( 2 ) ·f ( 3 )< 0 , 2 , 3 ) v?ZBEP???( KwQRu. = 3-l g x 2 , 3 ) Z.{á i k?EP x ???( K*#?u. 2 , 3 ) 2 . 5 , q??( *)O x { <=? ? = ? 1= f ( 2 . 5 ) 0 . 1 0 . ( 2 . 5 ) ·f ( 3 )< 0 , ≈- d- f v? x ∈ 0 ( 2 . 5 , 3 ) . 2 . 5 , 3 ) 2 . 7 5 , :q??( *)O x {<=?? 2= ( 2 . 7 5 ) . 1 9 . ( 2 . 5 ) ·f ( 2 . 7 5 )< 0 , =?f ≈0 d- f v 2 . 5 , 2 . 7 5 ) . ?x ∈( 0 2 . 5 , 2 . 6 2 5 ) , x 2 . 5 6 25 , ?V?? x 0∈ ( 0∈ ( 2 . 6 2 5 ) , x ( 2 . 5 6 25 , 2 . 5 9 37 5 ) , x ( 2 . 5 7 81 2 5 , ∈ ∈ 0 0 2 . 5 9 37 5 ) ,x ( 2 . 5 8 59 3 75 , 2 . 5 9 37 5 ) . ∈ 0 2 . 5 8 59 3 75- 2 . 5 9 37 5 | = 0 . 0 0 78 1 25< ^L |

1 6

0 . 1 , . 5 93 7 5 . v??EP*#?u?q- 2 【 . 1 】 ( )  3  P 9 2 A 1 . A , C  【 = f ( x ) , ( x ) 】 ?L?R y °w f ? a , b ] ( a ) ·f ( b )< 0 , ??[ ? ;< cmr f ??R f ( x ) a , b ) , ?( K w 9 O. = ? A) , ?3? x #w f ( x ) , ( x ) ≤0 =? C),f ≥0?&?, d n c${á ik??R*9O. 2 . , f ( x ) ( 2 ) ·f ( 3 )< 0 , ^x *?????? f f ( 3 ) ·f ( 4 )< 0 , f ( 4 ) ·f ( 5 )< 0 . ?S? “ ¤ H ?R y = f ( x ) a , b ] ??? [ *? 4 ] ;< cm*7? > ( a ) ·f ( b )< 0 , =f ( x ) H, ?rw f LM, ?R y ?? a , b ) ( x ) 2 , ?( K w 9 O” ???R f ij ? ? ? ( 3 ) , ( 3 , 4 ) , ( 4 , 5 ) Kw9O 3 . x + 1 ) ( x - 2 ) ( x - 3 )-1=0 , ?EP? ( w f ( x )= ( x + 1 ) ( x - 2 ) ( x - 3 )- 1 , (- 1 )= ?=? f - 1 , f ( 0 )= 5 , (- 1 ) ·f ( 0 )< 0 , L] f 1 , 0 ) v?, ZBEP???(- KwQRu. x + 1 ) ( x - 2 ) ( x - 3 )= 1 Z.{áik?EP( 1 , 0 ) ???(- K*#?u. 1 , 0 ) 0 . 5 , q??(- *)O x { <=? ? 1= - (- 0 . 5 )= 3 . 3 7 5 . (- 1 ) ·f (- 0 . 5 )< 0 , =? f d- f ( - 1 , - 0 . 5 ) . ( -1 , -0 . 5 ) v? x ∈ : q *)O 0 x 0 . 7 5 , (- 0 . 7 5 ) . 5 8 . {<=? ? = ? f ≈1 d 2 =- (- 1 ) ·f (- 0 . 7 5 )< 0 , 1 , - 0 . 7 5 ) . -f v? x ∈(- ? 0 ,-0 . 8 7 5 ) , x . 9 3 75 , V?? x 0 ∈ (-1 0 ∈ (-0 - 0 . 8 7 5 ) . (-0 . 8 7 5 ) -(-0 . 9 3 75 )|= ^L | 0 . 0 6 25< 0 . 1 , 0 . 8 7 5 . v??EP*#?u?q- -
x x 4 . . 8 - 1-l n x = 0 , ( x )= 0 . 8 - ?EP? 0 wf

2 ( x )= l n x - ???( 2 , Z.{áik??R f x 3 ) K*9O#??. 2 , 3 ) 2 . 5 , q??( *)O x { <=? ? = ? 1= f ( 2 . 5 ) . 1 2 . ≈0 ( 2 ) ·f ( 2 . 5 )< 0 , 2 , 2 . 5 ) . d- f v? x ∈( 0 2 , 2 . 5 ) 2 . 2 5 , :q( *)O x {<=??=? 2= f ( 2 . 2 5 ) 0 . 0 8 . ( 2 . 2 5 ) ·f ( 2 . 5 )< 0 , ≈- d- f v? x ( 2 . 2 5 , 2 . 5 ) . ∈ 0 2 . 2 5 , 2 . 3 7 5 ) , x 2 . 3 1 25 , 2 . ?V?? x ∈( ∈( 0 0 3 7 5 ) , x 2 . 3 4 37 5 ,2 . 3 7 5 ) , x 2 . 3 4 37 5, 2 . ∈( 0 0∈ ( 3 5 93 7 5 ) , x 2 . 3 4 37 5 , 2 . 3 5 15 6 25 ), x 2 . 3 4 3 ∈( ∈( 0 0 7 5 , 2 . 3 4 76 5 62 5 ) . 2 . 3 4 37 5- 2 . 3 4 76 5 62 5 | = 0 . 0 0 39 0 62 5< ^L | 0 . 1 , 2 , 3 ) . 3 4 3 7 5 . v??R???( K*9O?q- 2 B 1 . = I?R $ W?S?t x
2 - b ±槡 b - 4 a c ? 2 a

2 3±槡 (- 3 ) - 4× 2× (- 1 ) 3±槡 1 7 = x = , v?E 2× 2 4

3+槡 1 7 3-槡 1 7 , x . P*?Buij- x 1= 2= 4 4 Z.{áik?EP*#?u. 1 . 7 7 5 , 1 . 8 ) . 3 ,-0 . 2 7 5 ) , q??( ? (-0 w 2 f ( x )= 2 x - 3 x - 1 . ( 1 . 7 7 5 , 1 . 8 ) ??? K { <=? ( 1 . 7 7 5 )=- 0 . 0 2 37 5 , f ( 1 . 8 )= 0 . 0 8 , ?=?f ( 1 . 7 7 5 ) ·f ( 1 . 8 )< 0 . L] f v?ZBEP? ? 1 . 7 7 5 , 1 . 8 ) ?( KwQRu. 1 . 8- 1 . 7 7 5 | = 0 . 0 2 5< 0 . 1 , ^L | v?EP? 1 . 7 7 5 , 1 . 8 ) . 8 . ??( K*#?u?q- 1 0 . 3 , - 0 . 2 7 5 ) ?V??, EP???(- K*# 0 . 3 . . 8? ?u?q- - v?EP* #? u ij ] 1 - 0 . 3 .
3 2 3 2 . 6 x - 3 x + 5= 0 , ( x )=x - ?EP? x - wf 2 6 x - 3 x + 5 , 0v?. ?R?4¤?? 3

1- l n x , f ( 0 ) ( 0 . 5 ) 7 w ? ?, {<=?=? f ≈ 0 . 5 9 , f ( 1 )=- 0 . 2 , ( 0 . 5 ) ·f ( 1 )< 0 , L] f v?, Z 0 . 5 , 1 ) BEP???( Kwu. Z.{áik?EP
x 0 . 8 - 1= l n x 0 , 1 ) ???( K*#?u.

0 . 5 , 1 ) 0 . 7 5 , q??( *)O x {<=??= 1= ( 0 . 7 5 ) . 1 3 . ( 0 . 7 5 ) ·f ( 1 )<0 , ?f ≈0 d- f v? x 0 . 7 5 , 1 ) . ∈( 0 0 . 7 5 , 1 ) 0 . 8 7 5 , :q ( *)O x {<=?? = 2= ( 0 . 8 7 5 ) 0 . 0 4 . ( 0 . 8 7 5 ) ·f ( 0 . 7 5 )< 0 , ?f ≈- d- f x ( 0 . 7 5 , 0 . 8 7 5 ) . v? 0∈ 0 . 8 1 25 , 0 . 8 7 5 ) , x 0 . 8 1 25 , ?V?? x ∈( ∈( 0 0 0 . 8 4 37 5 ) . 0 . 8 1 25- 0 . 8 4 37 5 | = 0 . 0 3 12 5< 0 . 1 , ^L | . 81 2 5 . v??EP*#?u?q- 0 5 . ( 2 ) 0 . 3 1< 0 , f ( 3 ) . 4 3> 0 , ^?ow f ≈- ≈0 f ( 2 ) · f ( 3 ) < 0 , f ( x ) ( 2 , 3 ) L] v??R ??? K w9O.

0  3 2 , 0 ) , ( 0 , 1 ) , ( 6 , 7 ) v?, ZBEP? ? ? (- 2 , 0 ) =- 1 , K?w7Bu. q? ? (- *)O x { 1

1 7

 

(- 1 )= 1 , (- 2 ) ·f (- 1 )< 0 , <=??=?f d- f 2 , - 1 ) . 2 , - 1 ) v? x ∈(- :q(- *)O x 0 2 =- 1 . 5 , (- 1 . 5 )=- 7 . 3 7 5 . {<=??=?f (- 1 . 5 ) ·f (- 1 )< 0 , d- f 1 . 5 , - 1 ) . v? x ∈(- 0 1 . 2 5 , - 1 ) , x 1 . 1 2 5 , - ?V?? x ∈(- ∈(- 0 0 ) , x ( - 1 . 1 2 5 , - 1 . 0 6 25 ) . 1 ∈ 0 (- 1 . 0 6 25 )-(- 1 . 1 2 5 ) | = 0 . 0 6 25< ^L | 0 . 1 , 2 , 0 ) v??EP? ? ? (- K * #? u? q - 1 . 1 2 5 . 0 , 1 ) ?V???EP? ? ? ( K * #? u? q . 7 1 87 5 , 6 , 7 ) . 3 1 2 5 . -0 ???( K*#?u?q- 6 2 2 3 . ( 1 ) ( x )= 2- [ f ( x ) ] = 2- ( x + ^?ow g 2 4 3 2 3 x + 2 ) =- x - 6 x - 1 3 x - 1 2 x - 2 . ( 2 ) 1v?. ?R?4¤?? 3

!"#)*+,'

【 ( ) #$】 !" P 9 8 1 . y  【 . '(】 Z[\)]^'_`a1 y 2 2 2 . = 1 0 , o? 1?@A? k ?w a B ? ^ 5 ? 1 2?, …… ? C w a a …… ? ^ 5, ? 3?, 2 B, 3 B, 1 0× 2 0= 16 0 00 0 0 . ???wa 5= 6 0DB < ?: ? ? 5?@A ? k ?°? 3 w 1 =E?^5. 【 ( ) #$】 !" P 1 0 1 1 ) ?4?. ?R( ?“ FG ” t* `?} N; ?R ( 2 ) 3 ) }NHg, ???6 L I M; ?R ( ? I M* `?}?.
 *./^_2STfg


  【 ( ) #$】 !" P 1 0 4
r t 1 . ( 1 ) = y e , ???J??- y 0

= 0?* ? J R, r ?) y ?? ? J *3 0 ?? t }N?. 6 5 03 LM ? J - 5N, . °K 1 3}N?- 0 0 . 0 0 3 t 3 %O<, = 5 e . wy = 1 0?, 3 1 . ?y u? t ≈2 1 8 8 13LM?JR{- 1 6 5 03* 2?. v?, 1 #$ 3 ( 3 ) , g x ) , ^? 4 ?? ? R ( i j ? ? ? (-3 - 2 ) 1 , 0 ) ???(- K?w7B9O. 3 , - 2 ) 2 . 5 , q??(- *)O x {<=?? 1 =- (- 2 . 5 )= 1 . 4 3 7 5 . (- 3 ) ·g (- 2 . 5 )< 0 , =? g d- g 3 , - 2 . 5 ) . v?x ∈(- 0 3 , - 2 . 5 ) 2 . 7 5 , :q(- *)O x {<=? 2 =- (- 2 . 7 5 ) . 2 8 , (- 3 ) ·g (- 2 . 7 5 )< ?=?g ≈0 d- g 0 , 3 , - 2 . 7 5 ) . v? x ∈(- 0 . 8 7 5 , -2 . 7 5 ) ,x ?V ? ? x 0 ∈ (-2 0∈ (- 2 . 8 1 25 , - 2 . 7 5 ) . - 2 . 7 5- (- 2 . 8 1 25 ) | = 0 . 0 6 25< 0 . 1 . ^L | 3 , - 2 ) v??R??? (- K * 9 O? q - - 2 . 81 2 5 . 1 , 0 ) ?% ????R? ? ? (- K*9O 0 . 2 18 7 5 . ?q- - 2 0 0 33 LM ? J R { - 1 9 7 03 * ?V??, 2?. ( 2 ) ^n??, n??c??PO<QB??? ?p*?J}NRS. 7 5 ± 6 0 . 5 2 2 . 5 t - 4 . 9 t = 1 0 0 , , ^??w 7 u? t ≈ ? 2 × 4 . 9 t . 4 8 0 , t 3 . 8 2 7 . 0 0m ? ≈1 ≈1 v? , \ T)U ? 1 1 2 = t 2 . 3 5 ( s ) , ≈1 ? n2 P) , ?Y B *?? t 2- t 1 v . 8 t =7 5-9 . 8×1 . 4 8 0= \ T °p ` ? v 1= 0 -9 6 0 . 4 9 6 ( m/ s ) . 0 0m??YB*??] 1 2 . 3 5s , ?: \T)U? 1 0 , 6 0 . 4 9 6 ] . ?n2P), \T`?*rs] v ∈[ 【 ( ) #$】 !" P 1 0 6 1 . ( 1 ) ^???? 1 5 0 y 1 5 0+ 0 . 2 5 x , y + 0 . 2 5 , y 0 . 3 5 x , 1= 2= 3= x y 0 . 3 5 x - ( 1 5 0+ 0 . 2 5 x )= 0 . 1 x - 1 5 0 . 4= ( 2 ) . 1 x-1 5 0 ?? y 4 =0 2v?. *?4, ¤?? 3 < 15 0 0 ^?4 ??, ?x \?, ¨??VW; = 15 0 0\ ?, ?x ??c XcY; 0 0\ ?, ? x>15 ?? 2 #$ 3

 *./^_>?ST
 *`abcde2./^_

!"#$%&'(

【 ( ) )*】 !" P 1 0 0 ?. 【 ( ) )*】 !" P 1 0 1 ?.

1 8

Z8. 2 . ?. 【 . 2 】 ( )  3 !" P 1 0 7 A 1 . 3v?. ?O, ??? 4 ¤?? 3 S?O* i = k F+ b [??, ??\]? x k - C ?N B = ^_ 1 , 1 4 . 2 ) , ( 4 , 5 7 . 5 ) * ? R ? ?. q?%R?( w k + b = 1 4 . 2 , k 4 . 4 , ≈1 u? 4 k + b = 5 7 . 5 , b 0 . 2 . ≈- x = 1 4 . 4 F - 0 . 2 . v? I? ?R? $ W??u +t, qk??R? 4, ??? b, ZB?R ?? = ? ?R? ` (P B ? X, a ??$? X ?ò N N B =^_*??.

4 ( 2 ) ?R?4¤?? 3 v?. 4 . , obca§d- y +, bcNB- xm ? 24 0 0 12 0 0 x + 2 y = 1 × 9 5+ × 1 3 5 . x 6

(

)

0 0 0 0 . ^Lbca§de?? 7 D?K, v? y ≤7 24 0 0 12 0 0 2 x + × 9 5+ × 1 3 5 00 0 0 . ? 1 ≤7 x 6

(

)

{

{

. 4 1 . 3 . u? 6 ≤x ≤3 6 . 4 , 3 1 . 3 ] ?: bc*N?¨e??[ ;?, a§ d?e?? 7D+?K.
5 5 . = 0 , y = 1 . 0 1× 1 0 = 24 0 0 , y = 0 . 9 0× Ix ?x k x 1 0 ij$W y = c e , ?" 5

{

5 c = 1 . 0 1× 1 0 ,

0 . 9 0× 1 0= c e



24 0 0 k

5 c = 1 . 0 1× 1 0 , u? - 5 , k 4 . 8 0 5× 1 0 . ≈-

{

= 1 . 0 1× 1 0e v? y
5 1 0 P a .

- 5 5 - 4 . 8 0 5 × 1 0

x .


=55 9 6?, y=0 .7 7 2×1 0P a<0 . 7 7 5× ?x ?: ZX?f*?M]gh*. 6 . 0 0 0 0 ^5 ≤25 3 #$ 3 2 0 1 5 0 2 . 0 a?, a= . 2 ^ 3 =6 ^ 3= 3 1 0 3 6× 5× 1 0 1 0 1 2 x , = 3 0槡 1 0 . 0槡 1 0< 1 0 0 , ?x d- 3 v 3 3 6× 5× 1 0 ?, Z817w?`. 5 t , 0 0 ≤t ≤ , ?6 2 ? ? 5 7 5 0 , < t 3 . ( 1 ) x =?1 ≤ , 2 2 ? 7 7 1 3 ?1 - , < 0- 5 0t t ≤ . ? 5 2 2 2 4 ( 1 ) ?R?4¤?? 3 v?. 8 0 0 , (1 ) <15 0


. 3< t . 2 . u? 2 ≤7 . 3h . 2h ?: ?¨?{? 2 *5 7 ?<ie?. B 1 . ?. 2 . ( 1 ) , B*Q ? ??-? jf 0 - 0? , OA ( ; . 5± X? , VW 1 ±X) ? jf - 1 ? kU ? ; O B?*O*Q ? ??-? jf 0 eL 1 . 5± X HA . 5± X ? ? ? I ?jf0pL 1 ?? ?I V W , Z8. ( 2 ) 2 ) ??( *@l ]: ?? &?? )Umd c 3 ) ??( *@l]: ?Ymd?)U&?c?. ?;
-*.&+

(

)

A( ) !" P 1 1 2 1 . C  【 ( x ) 】 &XYb) f c;'deaf 0 , 2 ) 2 , 1 6 ) gh( i, 0jfgh[ ikde. 2 . C  【  】 &lm'noMpqrs, eP . 2t'$u%v, 6W C 3 . , oà2?? t *x1J C?*IJ- y 4 #$ 3 5 0 , 0 ≤t ≤ , ?6 2 ? ? 5 7 , < t ( 2 ) v =?0 ≤ , 2 2 ? 7 1 3 ?5 , < t ≤ . ? 0 2 2 ∵5h *ü A?"? B?, ∴v = y = s 5 0 0 = = 1 0 0 ( k m/ h ) , ? t 5

{

2 0 0- 1 0 0 t , 0 , ≤t ≤2 1 0 0 t - 2 0 0 , 2< t . ≤5

5v?. ?R?4¤?? 3

1 9

 

2 D =x , A B=4 , D =A E ·A B , d- A L] A ? 2 2 A D x A E= = . A B 4 2 2 x x D= A B- 2 A E= 4- 2× = 4- . v? C 4 2 2 x =A B+B C+C D+A D= 4+x + 4- + L] y 2 2 x 2 x =- + x + 8 . 2 2 x D> 0 , A E> 0 , C D> 0 , > 0 , > 0 , ^L A v? x 4 2 x 0 4- > , x < 2 2 . u? 0< 槡 2

5  3 4 . ( 1 ) ( 2 ) D n F; ? ? e、 Z ? p * D B F; 3 ) 、 ; ( 4 ) ( ??p Z? e* D B F ×Z p?e*? oDnF.??. 3 2 5 . ( x )=2 x - 4 x - 3 x + 1 , wf ?R? 4 ¤?? 3 6v?.

v?v?*?Ru + t- y= - 0< x < 2 2 . 槡 8 . ( 1 ) ^???? N=N 0

2 x +2 x+8 , 2

1 d- λ]D? (e ),
λ



1 λ e > 1 , > 1 , 1 . R, v? e ? 0< λ < ?N 0 ]D?R , e 6  3 1 , 0 ) 、 ( 0 , 1 ) 2 , 3 ) ?Rij ? ? ? (- ?( K? 3 2 x - 4 x - 3 x + 1= 0*°p v?EP 2 w7B9O, 2 , 3 ) *S??( K. 2 , 3 ) 2 . 5 , q??( *)O x { <=? ? = ? 1= f ( 2 . 5 )=- 0 . 2 5 . ( 2 . 5 ) ·f ( 3 )< 0 , 2 . 5 , 3 ) . d- f v?x ∈( 0 2 . 5 , 3 ) 2 . 7 5 , :q( *)O x {<=??=? 2= f ( 2 . 7 5 ) . 0 9 . ≈4 ( 2 . 5 ) ·f ( 2 . 7 5 )< 0 , 2 . 5 , 2 . 7 5 ) . d- f v? x ∈( 0 2 . 5 , 2 . 6 2 5 ) , x 2 . 5 , 2 . 5 6 25 ) , ?V, ?? x ∈( ∈( 0 0 x 2 . 5 , 2 . 5 3 12 5 ) , x 2 . 5 1 56 2 5 ,2 . 5 3 12 5 ) , ∈( ∈( 0 0 x 2 . 5 1 56 2 5 , 2 . 5 2 34 3 75 ) . ∈( 0 2 . 5 2 34 3 75- 2 . 5 1 56 2 5 | = 0 . 0 0 78 1 25< ^L | 3 2 0 . 0 1 , x- 4 x- 3 x + 1= 0*°pS? q v?EP 2 . 5 1 56 2 5 . -2 1 1 6 . g x = , g x - = 0 , ( x )= wl ??EP l :w G x x 1 l g x - , . 5 . {áik??AO*v±h{- 2 x 7 . 7v?, E B , , ¤?? 3 kD ⊥A ? ?- E ;> B D , D B= 9 0 ° . ^????∠A N v? N= 0 1 (e ) ]?L t*?R.
λ t

N - t -t λ ( 2 ) N= N e , d- e λ = , 0 N 0 N 1 N t= l n , =- l n . v? - λ ?t N λ N 0 0 N 1 N 1 0 0 ( 3 ) t =- l n = l n 2 . ? N= ?, 2 N λ 2 λ 0 9 . ( 1 )= -3+1 2+8=1 7>0 , f ( 2 )= d- f - 3× 8+ 1 2× 2+ 8= 8> 0 , f ( 3 )< 0 , v?, Z C 45 ???B9*/0. B( )  P 1 1 3 1 . 2pqr*] A>H; fsqr*] B> H. V^?. 2 . ?R*u+t32 ?槡 t , 0< t , ≤1 2 ? ? y = f ( t )=? 槡 3 2 - ( t - 2 ) + 3 , 1< t , ≤2 槡 2 ? ? ?槡 3 , t > 2 . 8v?. ?R*?4¤?? 3

7  3

8  3

2 0


相关文章:
人教版高中数学必修1课后习题答案
人教版高中数学必修1课后习题答案_数学_高中教育_教育专区。人教版高中数学必修1课后习题答案 人 教 版 高 中 数 学 必 修 1 课 后 习 题 答 案 人 教 ...
[精品]人教A版高中数学必修1全套学案及课时训练[附答案]
暂无评价|0人阅读|0次下载|举报文档 [精品]人教A版高中数学必修1全套学案及课时训练[附答案]_高一数学_数学_高中教育_教育专区。人教 A 版高中数学必修 1 全套...
集合-人教A版高中数学必修1课时训练(含答案)
集合-人教A版高中数学必修1课时训练(含答案)_高一数学...④x2+1=2x 的解集中含有 2 个元素. 其中正确...时,x=ab=8; 当 a=4 且 b=4 时,x=ab=16....
【创新设计-课堂讲义】高中数学(新人教A版必修1)课时作...
暂无评价|0人阅读|0次下载|举报文档【创新设计-课堂讲义】高中数学(新人教A版必修1)课时作业:1.3习题课 Word版含解析_高一数学_数学_高中教育_教育专区。§ 1...
新课标高中数学人教A版必修一全册导学案及答案
新课标高中数学人教A版必修一全册导学案及答案_数学...? ? [课内练习] 1.下列说法正确的是( )(A)...③与 2 相差很小 的数;④方程 x =4 的所有解...
新课标高中数学人教A版必修1全册导学案及答案
新课标高中数学人教A版必修1全册导学案及答案_数学...? ? [课内练习] 1.下列说法正确的是( )(A)...③与 2 相差很小 的数;④方程 x =4 的所有解...
...2015学年新课标A版高中数学必修1双基限时练16
新课标 A 版·数学·必修 1 高中同步学习方略 双基限时练(十六) 1.若 a2=N(a>0,且 a≠1),则有( A.log2N=a C.logNa=2 答案 D ) B. lg3 D....
高中北师版数学A版必修1(45分钟课时作业与单元测试卷):...
高中北师版数学A版必修1(45分钟课时作业与单元测试...1 D.-2 答案:B 解析:设 F(x)=f(x)-1,...(x)<0 的解集为( A.(-2,0)∪(0,2) ) B...
新课标高中数学人教A版必修1全册导学案及答案(145页)
新课标高中数学人教A版必修1全册导学案及答案(145...? ? [课内练习] 1.下列说法正确的是( ) (A)...③与 2 相差很小的 数;④方程 x =4 的所有解...
新课标高中数学人教A版必修1全册导学案及答案(105页)
新课标高中数学人教A版必修1全册导学案及答案(105...讨论和概括, 从而更好地完成本节课的教学目标。 四...?x ? y ? 2 的解集用列举法表示为___;用描述...
更多相关标签: