当前位置:首页 >> >>

数学常用公式和定理汇总


中考数学常用公式定理
1,整数 分数(包括:有限小数和无限环循小数) ,整数(包括:正整数,0,负整数)和分数 分数 都是有理数 有理数.如:-3, 有理数 做无理数 无理数.如:π,- 无理数 无理数统称为实数. 实数. 实数 ,0.231,0.737373…, , .无限不环循小数叫

,0.1010010001…(两个1之间依次多1个0).有理数和

2,绝对值:a≥0 ,绝对值

丨a丨=a;a≤0

丨a丨=-a.如:丨-

丨=

;丨3.14

-π丨=π-3.14.

3, 一个近似数 从左边笫一个不是0的数字起, 近似数, 到最末一个数字止, 所有的数字, , 近似数 都叫做这个近似数的有效数字 有效数字.如:0.05972精确到0.001得0.060,结果有两个有 有效数字 效数字6,0.

4,把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科 , 科 学记数法. 学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.

5,乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a± ,乘法公式( b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3 -b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.

6,幂的运算性质:①am×an=am+n.②am÷an=am-n.③(am)n=amn.④(ab)n= ,幂的运算性质: anbn.⑤( )n=n.⑥a-n=
1 ,特别:( )-n=( )n.⑦a0=1(a≠0).如:a3× an

a2=a5, 6÷a2=a4, a3)2=a6, 3a3)3=27a9, 3)-1=- , -2= a 5 ( ( (-

=

, (

)-2=( )2= ,(-3.14)=1,(

-

)0 = 1 .

7, , 二次根式: 二次根式 ①(

)2=a(a≥0), ② )2=45.②

=丨a丨, ③

=

×

, ④ =-a

=

-

(a>0,b≥0).如:①(3

=6.③a<0时,

.④-

一切为了学生的发展

一切为了家长的心愿

的平方根=4的平方根=±2.(平方根,立方根,算术平方根的概念)

8,一元二次方程 一元二次方程:对于方程:ax2+bx+c=0: 一元二次方程 ①求根公式 求根公式是x= 求根公式

b ± b 2 4ac ,其中△=b2-4ac叫做根的判别式. 2a

当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根; 当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根. ②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x -x2). ③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.

9,一次函数 一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即 一次函数 一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升); 当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k ≠0)又叫做正比例函数(y与x成正比例),图象必过原点.

10,反比例函数 反比例函数y= (k≠0)的图象叫做双曲线.当k>0时,双曲线在一,三象限 反比例函数 (在每一象限内,从左向右降);当k<0时,双曲线在二,四象限(在每一象限内, 从左向右上升).因此,它的增减性与一次函数相反.

11,统计初步 统计初步: 统计初步 概念: 总体, 个体. (1) ) 概念 ①所要考察的对象的全体叫做总体 其中每一个考察对象叫做个体. 总体 个体 从 总体中抽取的一部份个体叫做总体的一个样本 样本,样本中个体的数目叫做样本容 样本 样本容 量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众 众 数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数) 叫做这组数据的中位数. 中位数. 中位数 (2)公式:设有 n 个数 x1,x2,…,xn,那么: )公式:

一切为了学生的发展

一切为了家长的心愿

①平均数为: x = ②极差:

x1 + x2 + ...... + xn ; n

用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围, 用这种方 法得到的差称为极差,即:极差=最大值-最小值; ③方差: 数 据

x1

,

x2

……,

xn









s2

,



标准差:方差的算术平方根. 数 据

x1

,

x2

……,

xn









s

,



一组数据的方差越大,这组数据的波动越大,越不稳定.

12,频率与概率: ,频率与概率: (1)频率= 频数 ,各小组的频数之和等于总数,各小组的频率之和等于 1,频
总数

率分布直方图中各个小长方形的面积为各组频率. (2)概率 ①如果用 P 表示一个事件 A 发生的概率,则 0≤P(A)≤1; P(必然事件)=1;P(不可能事件)=0; ②在具体情境中了解概率的意义,运用列举法(包括列表,画树状图)计算简单 事件发生的概率. ③大量的重复实验时频率可视为事件发生概率的估计值;

13,锐角三角函数 ,锐角三角函数: ①设∠A是Rt△ABC的任一锐角,则∠A的正弦:sinA= cosA= ,∠A的正切:tanA=
一切为了学生的发展

,∠A的余弦:

.并且sin2A+cos2A=1.
一切为了家长的心愿

0<sinA<1,0<cosA<1,tanA>0.∠A越大,∠A的正弦和正切值越大,余弦 值反而越小. ②余角公式 余角公式:sin(90-A)=cosA,cos(90-A)=sinA. 余角公式 sin45=cos45= ③特殊角的三角函数值: 特殊角的三角函数值: 特殊角的三角函数值 sin30=cos60= , = , tan30= ,tan45=1,tan60= .
h α l

sin60=cos30 ,

④斜坡的坡度:i= 斜坡的坡度: 斜坡的坡度

铅垂高度 = .设坡角为α,则i=tanα= . 水平宽度

14,平面直角坐标系中的有关知识: ,平面直角坐标系中的有关知识: (1)对称性:若直角坐标系内一点 P(a,b) ,则 P 关于 x 轴对称的点为 P1(a,

-b) 关于 y 轴对称的点为 P2(-a,b) ,P ,关于原点对称的点为 P3(-a,-b).
(2)坐标平移:若直角坐标系内一点 P(a,b)向左平移 h 个单位,坐标变为 P (a-h,b) ,向右平移 h 个单位,坐标变为 P(a+h,b) ;向上平移 h 个单位, 坐标变为 P(a,b+h) ,向下平移 h 个单位,坐标变为 P(a,b-h).如:点 A (2,-1)向上平移 2 个单位,再向右平移 5 个单位,则坐标变为 A(7,1).

15,二次函数的有关知识: ,二次函数的有关知识: 1.定义:一般地,如果 y = ax 2 + bx + c(a, b, c 是常数, a ≠ 0) ,那么 y 叫做 x 的二 次函数.
2.抛物线的三要素:开口方向,对称轴,顶点.

① a 的符号决定抛物线的开口方向:当 a > 0 时,开口向上;当 a < 0 时,开口 向下; a 相等,抛物线的开口大小,形状相同. ②平行于 y 轴(或重合)的直线记作 x = h .特别地, y 轴记作直线 x = 0 . 几种特殊的二次函数的图像特征如下: 函数解析式
y = ax 2 y = ax 2 + k

开口方向

对称轴
x = 0 ( y 轴)

顶点坐标 (0,0)
(0, k )

当a > 0时

x = 0 ( y 轴)
一切为了家长的心愿

一切为了学生的发展

y = a(x h )

2

开口向上 当a < 0时 开口向下

x=h x=h

( h ,0) (h,k )

y = a(x h ) + k
2

y = ax 2 + bx + c
4.求抛物线的顶点,对称轴的方法

x=

b 2a

(

b 4ac b 2 , ) 2a 4a

b 4ac b 2 ( 1 ) 公 式 法 : y = ax + bx + c = a x + , ∴ 顶 点 是 + 2a 4a
2 2

(

b 4ac b 2 b , ) ,对称轴是直线 x = . 2a 4a 2a
2

(2 ) 配方法: 运用配方的方法, 将抛物线的解析式化为 y = a ( x h ) + k 的形式, 得到顶点为( h , k ),对称轴是直线 x = h . (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴 与抛物线的交点是顶点. 若已知抛物线上两点 ( x1 , y ),x2 , y )(及 y 值相同) 则对称轴方程可以表示 ( , 为: x =
x1 + x2 2

5.抛物线 y = ax 2 + bx + c 中, a, b, c 的作用

(1) a 决定开口方向及开口大小,这与 y = ax 2 中的 a 完全一样. (2) b 和 a 共同决定抛物线对称轴的位置.由于抛物线 y = ax 2 + bx + c 的对称轴
b b ,故:① b = 0 时,对称轴为 y 轴;② > 0 (即 a ,b 同号) 2a a b 时,对称轴在 y 轴左侧;③ < 0 (即 a , b 异号)时,对称轴在 y 轴右侧. a

是直线 x =

(3) c 的大小决定抛物线 y = ax 2 + bx + c 与 y 轴交点的位置. 当 x = 0 时,y = c , ∴抛物线 y = ax 2 + bx + c 与 y 轴有且只有一个交点 0, (

c) :
① c = 0 ,抛物线经过原点; ② c > 0 ,与 y 轴交于正半轴;③ c < 0 ,与 y 轴交 于负半轴.
一切为了学生的发展 一切为了家长的心愿

以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在 y 轴右 侧,则
b < 0. a

6.用待定系数法求二次函数的解析式

(1)一般式: y = ax 2 + bx + c .已知图像上三点或三对 x , y 的值,通常选择一 般式. (2)顶点式: y = a ( x h ) + k .已知图像的顶点或对称轴,通常选择顶点式.
2

( 3 ) 交 点 式 : 已 知 图 像 与 x 轴 的 交 点 坐 标 x1 , x 2 , 通 常 选 用 交 点 式 :

y = a( x x1 )( x x 2 ) .
7.直线与抛物线的交点

(1) y 轴与抛物线 y = ax 2 + bx + c 得交点为(0, c ). (2)抛物线与 x 轴的交点 二次函数 y = ax 2 + bx + c 的图像与 x 轴的两个交点的横坐标 x1 , x 2 ,是对应 一元二次方程 ax 2 + bx + c = 0 的两个实数根 . 抛物线与 x 轴的交点情况可 以由对应的一元二次方程的根的判别式判定: ①有两个交点 ( > 0 ) 抛物线与 x 轴相交; ②有一个交点(顶点在 x 轴上) ( = 0 ) 抛物线与 x 轴相切; ③没有交点 ( < 0 ) 抛物线与 x 轴相离. (3)平行于 x 轴的直线与抛物线的交点 同(2)一样可能有 0 个交点,1 个交点,2 个交点.当有 2 个交点时,两 交点的纵坐标相等,设纵坐标为 k ,则横坐标是 ax 2 + bx + c = k 的两个实 数根. (4)一次函数 y = kx + n(k ≠ 0) 的图像 l 与二次函数 y = ax 2 + bx + c(a ≠ 0 ) 的图 像 G 的交点,由方程组

y = kx + n y = ax 2 + bx + c

的解的数目来确定:①方程组有

两组不同的解时 l 与 G 有两个交点; ②方程组只有一组解时 l 与 G 只有一个交点;③方程组无解时 l 与 G 没有交点.
一切为了学生的发展 一切为了家长的心愿

(5)抛物线与 x 轴两交点之间的距离:若抛物线 y = ax 2 + bx + c 与 x 轴两交点

0 0 为 A( x1,),B( x 2,) ,则 AB = x1 x2

1,多边形内角和公式:n边形的内角和等于(n-2)180(n≥3,n是正整数), ,多边形内角和公式: 外角和等于360

2,平行线分线段成比例定理: , 平行线分线段成比例定理: (1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比 例. 如图:a‖b‖c,直线 l1 与 l2 分别与直线 a,b,c 相交与点 A,B,C D,E,F,则有
AB DE AB DE BC EF = , = , = BC EF AC DF AC DF

(2)推论:平行于三角形一边的直线截其他两边(或两边的延长线) ,所得的对 应线段成比例. 如图:△ ABC 中, DE ‖ BC , DE 与 AB , AC 相交与点 D, E ,则有:
AD AE AD AE DE DB EC = , = = , = DB EC AB AC BC AB AC

l1 A B C

l2 D E F

A

E A

D

a b c
B C B C D E

*3,直角三角形中的射影定理:如图:Rt△ABC 中,∠ACB=90o,CD⊥AB 于 ,直角三角形中的射影定理:
D,则有:

C

(1) CD 2 = AD BD (2) AC 2 = AD AB (3) BC 2 = BD AB

A

D

B

4,圆的有关性质: , 圆的有关性质 (1)垂径定理 垂径定理:如果一条直线具备以下五个性质中的任意两个性质:①经过圆 垂径定理 心;②垂直弦;③平分弦;④平分弦所对的劣弧;⑤平分弦所对的优弧,
一切为了学生的发展 一切为了家长的心愿

那么这条直线就具有另外三个性质.注:具备①,③时,弦不能是直径. (2)两条平行弦 平行弦所夹的弧相等. 平行弦 (3)圆心角 圆心角的度数等于它所对的弧的度数. 圆心角 (4)一条弧所对的圆周角 圆周角等于它所对的圆心角的一半. 圆周角 (5)圆周角等于它所对的弧的度数的一半. (6)同弧或等弧所对的圆周角相等. (7)在同圆或等圆中,相等的圆周角所对的弧相等. (8)90的圆周角所对的弦是直径,反之,直径所对的圆周角是90,直径是最 长的弦. (9)圆内接四边形 圆内接四边形的对角互补. 圆内接四边形

内心.三角形的 5,三角形的内心与外心:三角形的内切圆的圆心叫做三角形的内心 ,三角形的内心与外心: 内心 内心就是三内角角平分线的交点.三角形的外接圆的圆心叫做三角形的外 外 心.三角形的外心就是三边中垂线的交点. 常见结论: (1)Rt△ABC 的三条边分别为:a,b,c(c 为斜边),则它的内切 圆的半径 r =
a+bc ; 2

1 (2)△ABC 的周长为 l ,面积为 S,其内切圆的半径为 r,则 S = lr 2

,弦切角定理及其推论: *6,弦切角定理及其推论: (1)弦切角:顶点在圆上,并且一边和圆相交,另一边和圆相切的角叫做弦切 角.如图:∠PAC 为弦切角.
B A O P C

(2)弦切角定理:弦切角度数等于它所夹的弧的度数的一半. 如果 AC 是⊙O 的弦, 是⊙O 的切线, 为切点, ∠PAC = PA A 则 推论:弦切角等于所夹弧所对的圆周角(作用证明角相等) 如果 AC 是⊙O 的弦,PA 是⊙O 的切线,A 为切点,则 ∠PAC = ∠ABC
1 1 AC = ∠AOC 2 2

一切为了学生的发展

一切为了家长的心愿

*7,相交弦定理,割线定理,切割线定理: ,相交弦定理, 割线定理,切割线定理: 相交弦定理:圆内的两条弦相交,被交点分成的两条线段长的积相等. 如图①, 即:PAPB = PCPD 割线定理 :从圆外一点引圆的两条割线,这点到每条割线与圆交点的两条线段 长的积相等. 如图②,即:PAPB = PCPD 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两 条线段长的比例中项.如图③,即:PC2 = PAPB
C O P B D
C O A

C
D B P

O A B

P

A







8,面积公式: , 面积公式 ①S正△= ×(边长)2.

②S平行四边形=底×高. ③S菱形=底×高= ×(对角线的积), S梯形 = ④S圆=πR2. ⑤l圆周长=2πR. ⑥弧长L= ⑦ S扇形 .

1 (上底 + 下底) × 高 = 中位线 × 高 2

nπ r 2 1 = = lr 360 2

⑧S圆柱侧=底面周长×高=2πrh,S全面积=S侧+S底=2πrh+2πr2 ⑨S圆锥侧= ×底面周长×母线=πrb, S全面积=S侧+S底=πrb+πr2

一切为了学生的发展

一切为了家长的心愿

赞助商链接
相关文章:
整理初中数学常用公式和定理大全(修改版)
整理初中数学常用公式和定理大全(修改版)_数学_初中教育_教育专区。初中年级 新人教版 云南省中考数学常用公式汇总 1、 整数(包括: -3, 、,、. 统称为实数. ...
高中数学公式定理汇总
高中数学公式定理汇总 - 高中公式定理 必修 1 1.元素与集合的关系 x ? A ? x ? CU A; x ? CU A ? x ? A 2.德摩根公式 CU ( A ? B) ? CU ...
初中数学常用拓展公式定理汇总
初中数学常用拓展公式定理汇总 - 初中数学实用拓展公式定理汇总 一、解析几何 直线斜率公式 已知 A( x1 , y1 ) 、 B( x2 , y2 ) 是直线 l 上两点, ? ...
中考数学常用公式和定理大全
中考数学常用公式和定理大全 - 中考数学常用公式定理 1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3, , 11、统计...
人教版初中数学常用概念、公式和定理
初中数学重要的概念、公式和定理第一章 有理数正数:大于 0 的数叫正数 负数:小于 0 的数叫负数 有理数:整数和分数统称有理数 数轴:规定了方向、原点、单位...
常见的数学公式和定理
常见的初中数学公式与定理 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和...
初中(七八年级)数学常用公式和定理大全
初中(七八年级)数学常用公式和定理大全_初二数学_数学_初中教育_教育专区。选填,简要介绍文档的主要内容,方便文档被更多人浏览和下载。初中...
初中数学公式定理归纳
初中数学公式定理归纳 - 初中数学公式定理归纳汇总 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一...
备战2017年广东数学中考数学常用公式和定理大全
备战2017年广东数学中考数学常用公式和定理大全 - 2017年中考复习数学常用及较易遗忘的公式定理 0、 0.231, 0.737373…, 1、 整数(包括: 正整数、 负整数)...
高中数学公式大全
高中数学公式大全 - 高中数学常用公式及常用结论 1. 元素与集合的关系 x ? A ? x ? CU A , x ? CU A ? x ? A . 2.德摩根公式 CU ( A ? B ...
更多相关文章: