当前位置:首页 >> 数学 >>

第十三讲 函数与方程


第十三讲 函数与方程
一、函数零点所在区间的讨论
例 1.函数 f ( x) ? ln x ? 2 x ? 6 的零点一定位于区间( A. (1,2) 练习: 1.已知函数 f ( x ) ? A. (0,1) 2.方程 3 ?
x

) D. (4,5)

B . (2,3)

. C. (3,4)

6 ? log 2 x ,在下列区间中,包含 f ( x) 零点的区间是( x
B . (1,2) . C. ( 2,4) ) . C. (1,2) ) D. [3,4]



D. (4,??)

2? x 在下列哪个区间一定有实数根( x ?1
B . (0,1)

A. (?1,0)
5

D. (2,3)

3.方程 x ? x ? 1 ? 0 的一个正零点的存在区间可能是( A. [0,1] 4.函数 f ( x) ? x ? ( )
3

B . [1,2]

. C. [2,3] ) . C. (2,3) )

1 2

x?2

的零点所在区间为( B . (1,2)

A. (0,1)

D. (3,4)

5.函数 f ( x) ? 2 x ln(x ? 2) ? 3 的零点所在区间为( A. (2,3) B . (3,4) )

. C. (4,5)

D. (5,6)

6.下列函数在区间 [1,2] 上有零点的是( A. f ( x) ? 3x ? 4x ? 5
2

B . f ( x) ? x ? 5x ? 5
3

. C. f ( x) ? ln x ? 3x ? 6

D. f ( x) ? e ? 3x ? 6
x

二、函数的零点个数讨论
例 1. (1)函数 f ( x) ? 2 ? | x | ?2 在定义域上的零点个数为
x



(2)函数 f ( x) ? ? 练习:

?

x2 ? 2 ?2 x ? 6 ? ln x

x?0 的零点个数是 x?0



1.函数 f ( x) ? x ? 3x ? 2 x 的零点个数为
3 2



2.方程 x ? 4 x ? 2 ? 0 在区间 [?1,3] 内有
4 2

个实数解 个 个

3.方程 | x 2 ? 2 |? lg x 的实数根个数是 4.函数 y ? loga ( x ? 1) ? x 2 ? 2 5.函数 f ( x) ? ?

(0 ? a ? 1) 的的零点个数为


?x 2 ? 2 x ? 3 x ? 0 的零点个数为 ? ? 2 ? ln x x ? 0

?1 x?0 3 ? 2 6.已知符号函数 sgn( x ) ? ? 0 x ? 0 ,则函数 f ( x) ? sgn(ln x) ? x ? 的零点个数为 2 ?? 1 x ? 0 ?



三、函数零点及方程的根的综合应用
例 1.已知函数 f ( x) ?| x 2 ? 2 x ? 3 | ?2a 分别满足下列条件,求实数 a 的取值范围 (1)函数有两个零点 (2)函数有三个零点 (3)函数有四个零点

练习: 1.函数 f ( x) ? ?

x ?1 ? 4x ? 4 的图象和函数 g ( x) ? log2 x 的图象的交点个数是 2 ?x ? 4 x ? 3 x ? 1



2 2.已知 f ( x) 是定义在 R 上的奇函数,当 x ? 0 时, f ( x) ? x ? 3x ,则函数 g ( x) ? f ( x) ? x ? 3 的

零点的集合为 3. 对实数 a 和 b , 定义运算 “? ” :a ? b ? ?

?a a ? b ? 1 2 2 , 设函数 f ( x) ? ( x ? 2) ? ( x ? x ), x ? R , ?b a ? b ? 1


若函数 y ? f ( x) ? c 的图象与 x 轴恰有两个公共点,则实数 c 的取值范围是

4.已知函数 f ( x) ? ?

? ?

2 x ? ( x ? 1) 3 ?

x?2 x?2

,若方程 f ( x) ? k 有两个不同的实根,则 k 的取值范围是

? 1 ? ? 3 x ? (?1,0] 5.已知函数 f ( x) ? ? x ? 1 ,且 g ( x) ? f ( x) ? mx ? m 在 (?1,1] 内有且仅有两个不同 ? x x ? ( 0 , 1 ] ?
的零点,则实数 m 的取值范围是


赞助商链接
相关文章:
13函数图像函数与方程
13函数图像函数与方程 - 高 2017 届理科数学总复习讲义 第十三讲 函数的图像 函数与方程 一、知识提要 1、函数图像,它是函数关系的一种表示,它是从“形”的...
第十二讲 函数与方程
第十二讲 函数与方程 - 必修 1 资料 第十二讲 函数与方程 知识点一、零点的概念 一般地,如果函数 y ? f ( x ) 在实数 a 处的函数值等于 0,即 f ( ...
第12讲函数与方程
第12讲函数与方程_数学_高中教育_教育专区。第 12 讲教学目标 函数与方程 1.结合二次函数的图象,掌握二次方程根的分布情况; 2.理解函数零点的概念和性质,会用...
第12讲函数与方程
第10讲函数图象 第11讲 函数的值域 第13讲函数的应用1/2 相关文档推荐 ...程桥高级中学 2013 届高三数学复习学案 第 12 讲一、复习目标: 函数与方程 1...
第12讲_函数与方程
第12讲_函数与方程_高三数学_数学_高中教育_教育专区。仁荣中学文科数学一轮复习...[-2,2]时,函数至少有 一个零点,求 a 的取值范围. 2 例 13.已知函数 y...
第十三讲函数模型及其应用
第十三讲函数模型及其应用_数学_高中教育_教育专区。第十三讲函数模型及其应用 ...二次函数性质可 知,产量自 4 月份开始将每月下降(图象开口向下,对称轴方程是 ...
第6讲 函数与方程
第13讲 直线 圆的方程 第14讲 直线 圆的位置关系 第19讲 用样本估计总体及...二.命题走向函数与方程的理论是高中新课标教材中新增的知识点,特别是"二分法"求...
2013年高考会这样考第8讲 函数与方程
2013年高考会这样考第8讲 函数与方程_数学_高中教育_教育专区。第8讲【2013 ...方程在[-1,3]上有两根,不合题意,故 a≠1. 1 13 6 (2)当 f(3)=0...
第18讲 函数与方程
第11讲 点线面之间的基本... 第12讲 平行的判定与性质 第13讲 垂直的判定...数学 第 18 讲一、要点精讲 函数与方程 1.方程的根与函数的零点 (1) 函数...
第3讲函数与方程及函数的应用
第3讲函数与方程及函数的应用_数学_高中教育_教育专区。第3讲 函数与方程及函数...2014届高三数学《大二轮... 13页 免费©2014 Baidu 使用百度前必读 | 文库...
更多相关文章: