当前位置:首页 >> 数学 >>

第五届全国高中数学青年教师观摩与评比活动:《函数的奇偶性(1)》教学设计说明(贵州省龙里中学黄修禹)


函数的奇偶性(第 1 课时)教学设计说明
龙里中学 数学组 黄修禹 2010 年 4 月 一.教材分析 “ 函数奇偶性”是选自人教版高中数学必修第四章第三节的教学内容。函数奇偶性是函数重要性质之 一,函数奇偶性既是函数概念的延续和拓展,也是今后研究各种基本初等函数的基础。这一节利用函数图 象来研究函数性质的数形结合思想将贯穿于我们整个高中数学的教学与学习当中。从方法论的角度来看, 本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法。同时在生活及生产实际中有着 广泛的应用,所以函数的奇偶性应重点研究。 二.教学目标分析 1.知识目标:了解奇函数与偶函数的概念。 2.能力目标: (1)能从数和形两个角度认识函数奇偶性。 (2)能运用定义判断函数的奇偶性。 3.情感目标: (1)通过函数奇偶性概念的形成过程,培养学生的观察、归纳、抽象的能力,同时渗透数形结合、 从特殊到一般的数学思想。 (2)通过对函数奇偶性的研究,培养学生对数学美的体验、乐于求索的精神,形成科学、严谨的 研究态度。 三.教学设计思路说明 学情分析: 思维方面:高一学生已具有一定的形象思维能力,已能从直观的角度来认识一些简单的图形,但分析、 归纳、抽象的思维能力还是比较薄弱,通过恰当的培养和引导能够使得学生的分析归纳能力得到提高。 知识方面:通过初中所学的对称图形以及对称的概念的学习,对函数定义域、值域的理解和学习,学 生也基本掌握了从哪些方面来认识和学习函数,但是学生的分析归纳能力以及对事物本质的认识能力还比 较弱,所以我们必须引导学生从“数”与“形”两个方面来加深对函数奇偶性本质的认识。 问题诊断: 学生对图象的对称已有一个初步认识,通过问题 1 的设置,引导学生回忆,为下一步对函数奇偶性概 念的认识做铺垫。同时通过回忆让学生感受对称与我们的生活密切相关,进而激发学生的学习兴趣,引发 学生进一步学习的好奇心。 学生对对称图形比较熟悉,在举例时可能会举出长方形,正方形,圆等不是函数的对称图形,为强调

本节课研究的是函数的对称性问题,问题 2 的设置将对称图形限制在了函数范围内,于是学生就很容易得 到一次函数、反比例函数、二次函数图形等对称图形,从而引入概念。 学生对图象的认识由感性上升到理性, 这是一个难点。 如何突破难点?这里以学生较熟悉的

f ( x) ? x 3

切入,顺应了学生的认知规律做到从直观入手,从具体开始,逐步抽象,既做到了“直观、具体” ,又很 好的把握了教学内容的整体性和联系性。这里恰当运用几何画板的动态演示图象上运动的两点坐标之间的 关系,直观得到这两点横坐标总是互为相反数(可加问题,两横坐标的对称性是什么?学生可得出关于 y 轴对称(易)或原点对称(较难) ,为得出后面结论 2 埋下伏笔) ,纵坐标互为相反数,使学生获得由“形” 到“数”的理性认识,从而得出奇函数的概念(对概念有了初步的认识) ,让学生体验了数学概念的形成 过程。 问题 4 突出奇函数的“形”的特征。 几何画板演示 f ( x) ? x 2 图象,在类比奇函数的概念学生容易总得出偶函数的概念及图象性质。 由于学生的代数变形能力、判断归纳能力较差,为了防止学生在对例题第(3)小题的解答时,出现

f (? x) ? (? x) 5 ? 2(? x) 2 ? ?( x 5 ? 2 x 2 ) ? ? f ( x) 这种生拉硬套的错误解答,所以我在板书例题(1) (2)
时将判断函数奇偶性的步骤分为了三步: 第一步:先求出函数定义域是否关于原点对称。 第二步:写出 f (? x) 与 ? f (x) 的表达式并化简。 第三步: 确定 f (? x) ? f ( x) 与 f (? x) ? ? f ( x) 是否成立?是一个成立还是两个都成立, 还是两个都不 成立? 第(3)小题的另一作用是为了加深对概念中“任意”两字的理解。 讲解完例题的前三个小题后总结:这三个小题的定义域都是 R,而函数奇偶性判断的结果却不一样,学 生自然容易得出结论 2(对函数奇偶性概念有了比较深入的认识、理解)。 第(4)小题加强函数奇偶性的判断。第(5)小题强调结论 2。由于学生做题时缺乏化简的意识,故我 设置了第(6)小题,强调对于较复杂的函数在判断其奇偶性时要有化简的意识。 课堂练习与课后作业的设置是为了加深学生对函数奇偶性概念的理解及函数奇偶性判断的强化。 拓展是为了开阔学生的视野,同时加强学生对函数奇偶性概念的理解及函数奇偶性性质的运用。 四.教法特点及预期效果 1.教法分析 《新课标》指出: “学生在整个教学活动中,始终是认识与发展的主体。 ”遵循“教必须以学为基础” 的原则,结合学生在形象思维能力及概括、理解能力上的差异,我选择的是“教师引导下的合作探究”的

教学方法。 2.学法分析 立足于学生已有的知识经验和认知发展的水平,在教师引导下积极参与充满合作、探索的学习过程, 亲身经历概念的形成过程,充分发挥学生的动手参与实践的能力,使学生的学习过程成为在教师指导下的 知识“再创造”过程。在这一过程中,师生之间、生生之间的交流显得充分自然,合作学习的能力会得到 较好的发展。 预期效果: (1)学生对“数形结合”思想有更深的了解 (2)能提高学生的代数变形能力及归纳能力 (3)培养学生对数学美的体验、乐于求索的精神,形成科学、严谨的研究态度。


赞助商链接
相关文章:
...教师优秀课观摩与评比活动教案-《函数奇偶性》(内蒙...
2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《函数奇偶性》...1.3.2《函数的奇偶性》 .3.2《函数的奇偶性》 教学设计说明 教学设计说明 ...
2010年第五届全国高中数学青年教师观摩与评比活动-《三...
2010年第五届全国高中数学青年教师观摩与评比活动-《三角函数的图像与性质》(上海...《正弦函数和余弦函数的图像与性质(1)》教学设计说明 正弦函数和余弦函数的图像...
...教师优秀课观摩与评比活动教案-《函数的奇偶性》(贵...
第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《函数的奇偶性》(...函数的奇偶性( 课时)教学设计说明 函数的奇偶性(第 1 课时)教学设计说明龙里中学...
第五届全国高中数学青年教师观摩与评比活动-《三角函数...
第五届全国高中数学青年教师观摩与评比活动-《三角函数的图像与性质》说课(上海王建华...《正弦函数和余弦函数的图像与性质(1)》教学设计说明课题:正弦函数和余弦函数...
第五届全国高中数学青年教师观摩与评比活动:《平面向量...
第五届全国高中数学青年教师观摩与评比活动:《平面向量(1)》教案(江西景德镇二中郑敏) 隐藏>> 《从位移、速度、力到向量》教学设计 本节课的内容是北师大版数学...
第五届全国高中数学青年教师观摩与评比活动:《函数的单...
第五届全国高中数学青年教师观摩与评比活动:《函数的单调性》说课(四川绵阳中学赵志明)_学科竞赛_高中教育_教育专区。函数的单调性教学设计说明 (绵阳中学 数学组)...
2010年第五届全国高中数学青年教师观摩与评比活动《方...
2010年第五届全国高中数学青年教师观摩与评比活动教学设计说明2010年第五届全国...普通高中课标教材必修 1 共安排了三章内容,第章是《集合与函数的概念》 ,...
2010年第五届全国高中数学青年教师观摩与评比活动《函...
2010年第五届全国高中数学青年教师观摩与评比活动《函数模型的应用》(湖南师大附中龚红玲) 2010年第五届全国高中数学青年教师观摩与评比活动教学设计说明2010年第五...
2010年第五届全国高中数学青年教师观摩与评比活动《对...
2010年第五届全国高中数学青年教师观摩与评比活动教学设计说明2.8 对数函数(第...运用对数函数的性质比较两个数的大小 能力目标: 1、 培养学生运用图形解决问题...
第五届全国高中数学青年教师观摩与评比活动-《正弦定理...
欢迎光临《 欢迎光临《中学数学信息网》 信息网》 zxsx127@163.com 《正弦定理》的设计说明陕西师大附中 张辉 点明课题本节课是普通高中课程标准实验教科书必修 ...
更多相关文章: