当前位置:首页 >> 高考 >>

2014年北京市高考数学试卷(文科)


2014 年北京市高考数学试卷(文科)

菁优网

www.jyeoo.com

2014 年北京市高考数学试卷(文科)
一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选出符合题目要求的一项 1. (5 分) (2014?北京)若集合 A={0,1,2,4},B={1,2,3

},则 A∩ B=( ) A.{0,1,2,3,4} B.{0,4} C.{1,2} D.{3} 2. (5 分) (2014?北京)下列函数中,定义域是 R 且为增函数的是( ﹣ A.y=e x B.y=x C.y=lnx ) D.y=|x|

3. (5 分) (2014?北京)已知向量 =(2,4) , =(﹣1,1) ,则 2 ﹣ =( A.(5,7) B.(5,9) C.(3,7) )

) D.(3,9)

4. (5 分) (2014?北京)执行如图所示的程序框图,输出的 S 值为(

A .1

B.3
2

C .7
2

D.15

5. (5 分) (2014?北京)设 a,b 是实数,则“a>b”是“a >b ”的( ) A.充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D.既不充分也不必要条件 6. (5 分) (2014?北京)已知函数 f(x)= ﹣log2x,在下列区间中,包含 f(x)零点的区间是( A.(0,1) B.(1,2)
2 2



C.(2,4)

D.(4,+∞)

7. (5 分) (2014?北京)已知圆 C: (x﹣3) +(y﹣4) =1 和两点 A(﹣m,0) ,B(m,0) (m>0) ,若圆 C 上存 在点 P,使得∠ APB=90°,则 m 的最大值为( ) A .7 B.6 C .5 D.4 8. (5 分) (2014?北京)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下, 2 可食用率 p 与加工时间 t(单位:分钟)满足函数关系 p=at +bt+c(a,b,c 是常数) ,如图记录了三次实验的数据, 根据上述函数模型和实验数据,可以得到最佳加工时间为( )

?2010-2014 菁优网

菁优网

www.jyeoo.com

A.3.50 分钟

B.3.75 分钟

C.4.00 分钟

D.4.25 分钟

二、填空题共 6 小题,每小题 5 分,共 30 分. 9. (5 分) (2014?北京)若(x+i)i=﹣1+2i(x∈R) ,则 x= _________ . 10. (5 分) (2014?北京)设双曲线 C 的两个焦点为(﹣ _________ . ,0) , ( ,0) ,一个顶点是(1,0) ,则 C 的方程为

11. (5 分) (2014?北京)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为 _________ .

12. (5 分) (2014?北京)在△ ABC 中,a=1,b=2,cosC= ,则 c= _________ ;sinA= _________ .

13. (5 分) (2014?北京)若 x,y 满足

,则 z=

x+y 的最小值为 _________ .

14. (5 分) (2014?北京)顾客请一位工艺师把 A,B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项 任务,每件原料先由徒弟完成粗加工,再由师傅进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每 道工序所需时间(单位:工作日)如下: 工序 粗加工 精加工 时间 原料 15 原料 A9 21 原料 B 6 则最短交货期为 _________ 个工作日. 三、解答题,共 6 小题,满分 80 分,解答应写出文字说明,演算步骤或证明过程.
?2010-2014 菁优网

菁优网

www.jyeoo.com 15. (13 分) (2014?北京)已知{an}是等差数列,满足 a1=3,a4=12,数列{bn}满足 b1=4,b4=20,且{bn﹣an}为等比 数列. (Ⅰ )求数列{an}和{bn}的通项公式; (Ⅱ )求数列{bn}的前 n 项和. 16. (13 分) (2014?北京)函数 f(x)=3sin(2x+ (Ⅰ )写出 f(x)的最小正周期及图中 x0,y0 的值; (Ⅱ )求 f(x)在区间[﹣ ,﹣ ]上的最大值和最小值. )的部分图象如图所示.

17. (14 分) (2014?北京)如图,在三棱柱 ABC﹣A1B1C1 中,侧棱垂直于底面,AB⊥ BC,AA1=AC=2,BC=1,E, F 分别是 A1C1,BC 的中点. (Ⅰ )求证:平面 ABE⊥ B1BCC1; (Ⅱ )求证:C1F∥ 平面 ABE; (Ⅲ )求三棱锥 E﹣ABC 的体积.

18. (13 分) (2014?北京)从某校随机抽取 100 名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整 理得到数据分组及频数分布表和频率分布直方图: 排号分组 频 数 1 [0,2) 6 2 [2,4) 8 3 [4,6) 17 4 [6,8) 22 5 [8,10) 25 6 [10,12)12 7 [12,14)6 8 [14,16)2 9 [16,18)2 100 合计
?2010-2014 菁优网

菁优网

www.jyeoo.com (Ⅰ )从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于 12 小时的概率; (Ⅱ )求频率分布直方图中的 a,b 的值; (Ⅲ )假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的 100 名学生该周课外阅读时间的平均 数在第几组(只需写结论)

19. (14 分) (2014?北京)已知椭圆 C:x +2y =4. (Ⅰ )求椭圆 C 的离心率; (Ⅱ )设 O 为原点,若点 A 在直线 y=2 上,点 B 在椭圆 C 上,且 OA⊥ OB,求线段 AB 长度的最小值. 20. (13 分) (2014?北京)已知函数 f(x)=2x ﹣3x. (Ⅰ )求 f(x)在区间[﹣2,1]上的最大值; (Ⅱ )若过点 P(1,t)存在 3 条直线与曲线 y=f(x)相切,求 t 的取值范围; (Ⅲ )问过点 A(﹣1,2) ,B(2,10) ,C(0,2)分别存在几条直线与曲线 y=f(x)相切?(只需写出结论)
3

2

2

?2010-2014 菁优网

菁优网

www.jyeoo.com

2014 年北京市高考数学试卷(文科)
参考答案与试题解析
一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选出符合题目要求的一项 1. (5 分) (2014?北京)若集合 A={0,1,2,4},B={1,2,3},则 A∩ B=( ) A.{0,1,2,3,4} B.{0,4} C.{1,2} D.{3} 考点: 专题: 分析: 解答: 交集及其运算. 集合. 直接利用交集的运算得答案. 解:∵ A={0,1,2,4},B={1,2,3}, ∴ A∩ B={0,1,2,4}∩ {1,2,3}={1,2}. 故选:C. 点评: 本题考查交集及其运算,是基础题.
菁优网版权所有

2. (5 分) (2014?北京)下列函数中,定义域是 R 且为增函数的是( ﹣x A.y=e B.y=x C.y=lnx 考点: 专题: 分析: 解答:

) D.y=|x|

函数单调性的判断与证明. 函数的性质及应用. 根据函数单调性的性质和函数成立的条件,即可得到结论. 解:A.函数的定义域为 R,但函数为减函数,不满足条件. B.函数的定义域为 R,函数增函数,满足条件. C.函数的定义域为(0,+∞) ,函数为增函数,不满足条件. D.函数的定义域为 R,在(0,+∞)上函数是增函数,在(﹣∞,0)上是减函数,不满足条件. 故选:B. 点评: 本题主要考查函数定义域和单调性的判断,比较基础.
菁优网版权所有

3. (5 分) (2014?北京)已知向量 =(2,4) , =(﹣1,1) ,则 2 ﹣ =( A.(5,7) B.(5,9) C.(3,7)

) D.(3,9)

考点: 平面向量的坐标运算. 专题: 平面向量及应用. 分析: 直接利用平面向量的数乘及坐标减法运算得答案. 解答: 解:由 =(2,4) , =(﹣1,1) ,得:
菁优网版权所有

2 ﹣ =2(2,4)﹣(﹣1,1)=(4,8)﹣(﹣1,1)=(5,7) . 故选:A. 点评: 本题考查平面向量的数乘及坐标减法运算,是基础的计算题. 4. (5 分) (2014?北京)执行如图所示的程序框图,输出的 S 值为( )

?2010-2014 菁优网

菁优网

www.jyeoo.com

A .1 考点: 专题: 分析: 解答:

B.3 程序框图. 计算题;算法和程序框图.
菁优网版权所有

C .7

D.15

算法的功能是求 S=1+2 +2 +…+2 的值,根据条件确定跳出循环的 k 值,计算输出的 S 值. 1 2 k 解:由程序框图知:算法的功能是求 S=1+2 +2 +…+2 的值, ∵ 跳出循环的 k 值为 3, ∴ 输出 S=1+2+4=7. 故选:C. 点评: 本题考查了当型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键. 5. (5 分) (2014?北京)设 a,b 是实数,则“a>b”是“a >b ”的( ) A.充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D.既不充分也不必要条件 考点: 必要条件、充分条件与充要条件的判断. 分析: 本题考查的判断充要条件的方法,我们可以根据充要条件的定义进行判断,此题的关键是对不等式性质的 理解. 解答: 解:因为 a,b 都是实数,由 a>b,不一定有 a2>b2,如﹣2>﹣3,但(﹣2)2<(﹣3)2,所以“a>b”是“a2 2 >b ”的不充分条件; 2 2 2 2 2 2 反之,由 a >b 也不一定得 a>b,如(﹣3) >(﹣2) ,但﹣3<﹣2,所以“a>b”是“a >b ”的不必要条 件. 故选 D 点评: 判断充要条件的方法是: ① 若 p?q 为真命题且 q?p 为假命题,则命题 p 是命题 q 的充分不必要条件; ② 若 p?q 为假命题且 q?p 为真命题,则命题 p 是命题 q 的必要不充分条件; ③ 若 p?q 为真命题且 q?p 为真命题,则命题 p 是命题 q 的充要条件; ④ 若 p?q 为假命题且 q?p 为假命题,则命题 p 是命题 q 的即不充分也不必要条件. ⑤ 判断命题 p 与命题 q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题 p 与命题 q 的关 系. ⑥ 涉及不等式平方大小的比较问题,举反例不失为一种有效的方法.
菁优网版权所有

1

2

k

2

2

6. (5 分) (2014?北京)已知函数 f(x)= ﹣log2x,在下列区间中,包含 f(x)零点的区间是( A.(0,1) B.(1,2) C.(2,4) D.(4,+∞)



?2010-2014 菁优网

菁优网

www.jyeoo.com 考点: 函数零点的判定定理. 专题: 函数的性质及应用. 分析: 可得 f(2)=2>0,f(4)=﹣ <0,由零点的判定定理可得.
菁优网版权所有

解答:

解:∵ f(x)= ﹣log2x, ∴ f(2)=2>0,f(4)=﹣ <0,

满足 f(2)f(4)<0, ∴ f(x)在区间(2,4)内必有零点, 故选:C 点评: 本题考查还是零点的判断,属基础题. 7. (5 分) (2014?北京)已知圆 C: (x﹣3) +(y﹣4) =1 和两点 A(﹣m,0) ,B(m,0) (m>0) ,若圆 C 上存 在点 P,使得∠ APB=90°,则 m 的最大值为( ) A .7 B.6 C .5 D.4 考点: 直线与圆的位置关系. 专题: 直线与圆. 分析: 根据圆心 C 到 O(0,0)的距离为 5,可得圆 C 上的点到点 O 的距离的最大值为 6.再由∠ APB=90°,可得
菁优网版权所有

2

2

PO= AB=m,可得 m≤6,从而得到答案.
2 2 解答: 解:圆 C: (x﹣3) +(y﹣4) =1 的圆心 C(3,4) ,半径为 1, ∵ 圆心 C 到 O(0,0)的距离为 5, ∴ 圆 C 上的点到点 O 的距离的最大值为 6.

再由∠ APB=90°,以 A 为直径的圆和圆 C 有交点,可得 PO= AB=m,故有 m≤6, 故选:B. 点评: 本题主要直线和圆的位置关系,求得圆 C 上的点到点 O 的距离的最大值为 6,是解题的关键,属于中档题. 8. (5 分) (2014?北京)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下, 2 可食用率 p 与加工时间 t(单位:分钟)满足函数关系 p=at +bt+c(a,b,c 是常数) ,如图记录了三次实验的数据, 根据上述函数模型和实验数据,可以得到最佳加工时间为( )

A.3.50 分钟

B.3.75 分钟

C.4.00 分钟

D.4.25 分钟

考点: 进行简单的合情推理. 专题: 应用题;推理和证明. 分析: 由提供的数据,求出函数的解析式,由二次函数的图象与性质可得结论.
菁优网版权所有

?2010-2014 菁优网

菁优网

www.jyeoo.com 解答: 2 解:将(3,0.7) , (4,0.8) , (5,0.5)分别代入 p=at +bt+c,可得 解得 a=﹣0.2,b=1.5,c=﹣2, ∴ p=﹣0.2t +1.5t﹣2,对称轴为 t=﹣
2



=3.75.

故选:B. 点评: 本题考查了二次函数模型的应用,考查利用二次函数的图象与性质求函数的最值问题,确定函数模型是关 键. 二、填空题共 6 小题,每小题 5 分,共 30 分. 9. (5 分) (2014?北京)若(x+i)i=﹣1+2i(x∈R) ,则 x= 2 . 考点: 专题: 分析: 解答: 复数相等的充要条件. 数系的扩充和复数. 化简原式可得∴ ﹣1+xi=﹣1+2i,由复数相等的定义可得. 解:∵ (x+i)i=﹣1+2i, ∴ ﹣1+xi=﹣1+2i, 由复数相等可得 x=2 故答案为:2 点评: 本题考查复数相等的充要条件,属基础题.
菁优网版权所有

10. (5 分) (2014?北京)设双曲线 C 的两个焦点为(﹣ 2 2 x ﹣y =1 .

,0) , (

,0) ,一个顶点是(1,0) ,则 C 的方程为

考点: 双曲线的标准方程. 专题: 计算题;圆锥曲线的定义、性质与方程. 分析: 利用双曲线 C 的两个焦点为(﹣ ,0) , ( ,0) ,一个顶点是(1,0) ,可得 c= 即可得出双曲线的方程. 解答: 解:∵ 双曲线 C 的两个焦点为(﹣ ,0) , ( ,0) ,一个顶点是(1,0) , ∴ c= ,a=1, ∴ b=1, 2 2 ∴ C 的方程为 x ﹣y =1. 2 2 故答案为:x ﹣y =1. 点评: 本题考查双曲线方程与性质,考查学生的计算能力,属于基础题.
菁优网版权所有

,a=1,进而求出 b,

11. (5 分) (2014?北京)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为 2



?2010-2014 菁优网

菁优网

www.jyeoo.com 考点: 由三视图求面积、体积. 专题: 计算题;空间位置关系与距离. 分析: 由主视图知 CD⊥ 平面 ABC、B 点在 AC 上的射影为 AC 中点及 AC 长,由左视图可知 CD 长及△ ABC 中变 AC 的高,利用勾股定理即可求出最长棱 BD 的长. 解答: 解:由主视图知 CD⊥ 平面 ABC,设 AC 中点为 E,则 BE⊥ AC,且 AE=CE=1; 由左视图知 CD=2,BE=1, 在 Rt△ BCE 中,BC= , 在 Rt△ BCD 中,BD=2 , 在 Rt△ ACD 中,AD=2 . 则三棱锥中最长棱的长为 2 . 故答案为:2 .
菁优网版权所有

点评: 本题考查点、线、面间的距离计算,考查空间图形的三视图,考查学生的空间想象能力,考查学生分析解 决问题的能力.

12. (5 分) (2014?北京)在△ ABC 中,a=1,b=2,cosC= ,则 c= 2 ;sinA=



考点: 余弦定理. 专题: 三角函数的求值;解三角形. 分析: 利用余弦定理列出关系式,将 a,b,以及 cosC 的值代入求出 c 的值,由 cosC 的值求出 sinC 的值,再由 a, c 的值,利用正弦定理即可求出 sinA 的值. 解答: 解:∵ 在△ ABC 中,a=1,b=2,cosC= ,
菁优网版权所有

∴ 由余弦定理得:c =a +b ﹣2abcosC=1+4﹣1=4,即 c=2; ∵ cosC= ,C 为三角形内角, ∴ sinC= = ,

2

2

2

∴ 由正弦定理 故答案为:2;

=

得:sinA=

=

=



点评: 此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.

13. (5 分) (2014?北京)若 x,y 满足

,则 z=

x+y 的最小值为 1 .

?2010-2014 菁优网

菁优网

www.jyeoo.com 考点: 简单线性规划. 专题: 数形结合. 分析: 由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐 标,代入目标函数得答案. 解答:
菁优网版权所有

解:由约束条件

作出可行域如图,

化目标函数 z= x+y 为 由图可知,当直线 此时 .

, 过 C(0,1)时直线在 y 轴上的截距最小.

故答案为:1. 点评: 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题. 14. (5 分) (2014?北京)顾客请一位工艺师把 A,B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项 任务,每件原料先由徒弟完成粗加工,再由师傅进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每 道工序所需时间(单位:工作日)如下: 工序 粗加工 精加工 时间 原料 15 原料 A9 21 原料 B 6 则最短交货期为 42 个工作日. 考点: 专题: 分析: 解答: 算法的特点. 应用题;函数的性质及应用. 先完成 B 的加工,再完成 A 的加工即可. 解:由题意,徒弟利用 6 天完成原料 B 的加工,由师傅利用 21 天完成精加工,与此同时,徒弟利用 9 天完 成原料 A 的加工,最后由师傅利用 15 天完成精加工,故最短交货期为 6+21+15=42 个工作日. 故答案为:42. 点评: 本题考查利用数学知识解决实际问题,考查学生分析解决问题的能力,属于基础题.
菁优网版权所有

三、解答题,共 6 小题,满分 80 分,解答应写出文字说明,演算步骤或证明过程. 15. (13 分) (2014?北京)已知{an}是等差数列,满足 a1=3,a4=12,数列{bn}满足 b1=4,b4=20,且{bn﹣an}为等比 数列. (Ⅰ )求数列{an}和{bn}的通项公式; (Ⅱ )求数列{bn}的前 n 项和.

?2010-2014 菁优网

菁优网

www.jyeoo.com 考点: 数列的求和;等差数列的通项公式;等比数列的通项公式. 专题: 等差数列与等比数列. 分析: (Ⅰ )利用等差数列、等比数列的通项公式先求得公差和公比,即得结论; (Ⅱ )利用分组求和法,有等差数列及等比数列的前 n 项和公式即可求得数列的和. 解答: 解: (Ⅰ )设等差数列{an}的公差为 d,由题意得
菁优网版权所有

d=

=

=3.

∴ an=a1+(n﹣1)d=3n(n=1,2,…) , 设等比数列{bn﹣an}的公比为 q,则 q=
3

=

=8,∴ q=2,
n﹣1 n﹣1

∴ bn﹣an=(b1﹣a1)q =2 , n﹣1 ∴ bn=3n+2 (n=1,2,…) . n﹣1 (Ⅱ )由(Ⅰ )知 bn=3n+2 (n=1,2,…) . ∵ 数列{3n}的前 n 项和为 n(n+1) ,数列{2
n n﹣1

}的前 n 项和为 1×

=2 ﹣1,

n

∴ 数列{bn}的前 n 项和为 n(n+1)+2 ﹣1. 点评: 本题主要考查学生对等差数列及等比数列的通项公式和前 n 项和公式的应用,考查学生的基本的运算能力, 属基础题.

16. (13 分) (2014?北京)函数 f(x)=3sin(2x+ (Ⅰ )写出 f(x)的最小正周期及图中 x0,y0 的值; (Ⅱ )求 f(x)在区间[﹣ ,﹣

)的部分图象如图所示.

]上的最大值和最小值.

考点: 三角函数的周期性及其求法;正弦函数的定义域和值域. 专题: 三角函数的图像与性质. 分析: (Ⅰ )由题目所给的解析式和图象可得所求; (Ⅱ )由 x∈[﹣ 数的性质可得最值. 解答: 解: (Ⅰ )∵ f(x)=3sin(2x+ ∴ f(x)的最小正周期 T= ) , =π,

菁优网版权所有

,﹣

]可得 2x+

∈[﹣

,0],由三角函

?2010-2014 菁优网

菁优网

www.jyeoo.com 可知 y0 为函数的最大值 3,x0= (Ⅱ )∵ x∈[﹣ ∴ 2x+ ∴ 当 2x+ 当 2x+ ∈[﹣ ,﹣ ,0], 时,f(x)取最大值 0, 时,f(x)取最小值﹣3 ], ;

=0,即 x= = ,即 x=﹣

点评: 本题考查三角函数的图象和性质,属基础题. 17. (14 分) (2014?北京)如图,在三棱柱 ABC﹣A1B1C1 中,侧棱垂直于底面,AB⊥ BC,AA1=AC=2,BC=1,E, F 分别是 A1C1,BC 的中点. (Ⅰ )求证:平面 ABE⊥ B1BCC1; (Ⅱ )求证:C1F∥ 平面 ABE; (Ⅲ )求三棱锥 E﹣ABC 的体积.

考点: 平面与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面平行的判定. 专题: 综合题;空间位置关系与距离. 分析: (Ⅰ )证明 AB⊥ B1BCC1,可得平面 ABE⊥ B1BCC1; (Ⅱ )证明 C1F∥ 平面 ABE,只需证明四边形 FGEC1 为平行四边形,可得 C1F∥ EG;
菁优网版权所有

(Ⅲ )利用 VE﹣ABC=

,可求三棱锥 E﹣ABC 的体积.

解答: (Ⅰ )证明:∵ 三棱柱 ABC﹣A1B1C1 中,侧棱垂直于底面, ∴ BB1⊥ AB, ∵ AB⊥ BC,BB1∩ BC=B, ∴ AB⊥ B1BCC1, ∵ AB?平面 ABE, ∴ 平面 ABE⊥ B1BCC1; (Ⅱ )证明:取 AB 中点 G,连接 EG,FG,则 ∵ F 是 BC 的中点, ∴ FG∥ AC,FG= AC, ∵ E 是 A1C1 的中点, ∴ FG∥ EC1,FG=EC1, ∴ 四边形 FGEC1 为平行四边形, ∴ C1F∥ EG, ∵ C1F?平面 ABE,EG?平面 ABE,
?2010-2014 菁优网

菁优网

www.jyeoo.com ∴ C1F∥ 平面 ABE; (Ⅲ )解:∵ AA1=AC=2,BC=1,AB⊥ BC, ∴ AB= , ∴ VE﹣ABC= = =

点评: 本题考查线面平行、垂直的证明,考查三棱锥 E﹣ABC 的体积的计算,正确运用线面平行、垂直的判定定 理是关键. 18. (13 分) (2014?北京)从某校随机抽取 100 名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整 理得到数据分组及频数分布表和频率分布直方图: 排号分组 频 数 1 [0,2) 6 2 [2,4) 8 3 [4,6) 17 4 [6,8) 22 5 [8,10) 25 6 [10,12)12 7 [12,14)6 8 [14,16)2 9 [16,18)2 100 合计 (Ⅰ )从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于 12 小时的概率; (Ⅱ )求频率分布直方图中的 a,b 的值; (Ⅲ )假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的 100 名学生该周课外阅读时间的平均 数在第几组(只需写结论)

考点: 频率分布直方图;频率分布表.

菁优网版权所有

?2010-2014 菁优网

菁优网

www.jyeoo.com 专题: 计算题;概率与统计. 分析: (Ⅰ )根据频率分布表求出周课外阅读时间少于 12 小时的频数,再根据频率= (Ⅱ )根据小矩形的高= 求 a、b 的值;

求频率;

(Ⅲ )利用平均数公式求得数据的平均数,可得答案. 解答: 解: (Ⅰ )由频率分布表知:周课外阅读时间少于 12 小时的频数为 6+8+17+22+25+12=90, ∴ 周课外阅读时间少于 12 小时的频率为 =0.9;

(Ⅱ )由频率分布表知:数据在[4,6)的频数为 17,∴ 频率为 0.17,∴ a=0.085; 数据在[8,10)的频数为 25,∴ 频率为 0.25,∴ b=0.125; (Ⅲ ) 数据的平均数为 1×0.06+3×0.08+5×0.17+7×0.22+9×0.25+11×0.12+13×0.06+15×0.02+17×0.02=7.68 (小时) , ∴ 样本中的 100 名学生该周课外阅读时间的平均数在第四组. 点评: 本题考查了频率分布表与频率分布直方图,再频率分布直方图中频率=小矩形的面积=小矩形的高×组距 = .

19. (14 分) (2014?北京)已知椭圆 C:x +2y =4. (Ⅰ )求椭圆 C 的离心率; (Ⅱ )设 O 为原点,若点 A 在直线 y=2 上,点 B 在椭圆 C 上,且 OA⊥ OB,求线段 AB 长度的最小值. 考点: 椭圆的简单性质;两点间的距离公式. 专题: 圆锥曲线的定义、性质与方程. 分析:
2 2

2

2

菁优网版权所有

(Ⅰ )椭圆 C:x +2y =4 化为标准方程为

,求出 a,c,即可求椭圆 C 的离心率;

(Ⅱ )先表示出线段 AB 长度,再利用基本不等式,求出最小值. 解答: 解: (Ⅰ )椭圆 C:x +2y =4 化为标准方程为 ∴ a=2,b= ,c= , ;
2 2



∴ 椭圆 C 的离心率 e= =

(Ⅱ )设 A(t,2) ,B(x0,y0) ,x0≠0,则 ∵ OA⊥ OB, ∴ =0, ,

∴ tx0+y0=0,∴ t=﹣ ∵ ,

∴ |AB| =(x0﹣t) +(y0﹣2) =

2

2

2

+4≥4+4=8,

当且仅当

,即 x0 =4 时等号成立,

2

?2010-2014 菁优网

菁优网

www.jyeoo.com ∴ 线段 AB 长度的最小值为 2 . 点评: 本题考查椭圆的方程与性质,考查基本不等式的运用,考查学生的计算能力,属于中档题. 20. (13 分) (2014?北京)已知函数 f(x)=2x ﹣3x. (Ⅰ )求 f(x)在区间[﹣2,1]上的最大值; (Ⅱ )若过点 P(1,t)存在 3 条直线与曲线 y=f(x)相切,求 t 的取值范围; (Ⅲ )问过点 A(﹣1,2) ,B(2,10) ,C(0,2)分别存在几条直线与曲线 y=f(x)相切?(只需写出结论) 考点: 导数在最大值、最小值问题中的应用;函数的零点;利用导数研究曲线上某点切线方程. 专题: 导数的综合应用. 分析: (Ⅰ )利用导数求得极值点比较 f(﹣2) ,f(﹣ ) ,f( ) ,f(1)的大小即得结论; (Ⅱ )利用导数的几何意义得出切线方程 4 ﹣6
3 2 3

菁优网版权所有

+t+3=0,设 g(x)=4x ﹣6x +t+3,则“过点 P(1,t)

存在 3 条直线与曲线 y=f(x)相切”, 等价于“g(x)有 3 个不同的零点”.利用导数判断函数的单调性进而得出函数的零点情况,得出结论; (Ⅲ )利用(Ⅱ )的结论写出即可.
3 2 解答: 解: (Ⅰ )由 f(x)=2x ﹣3x 得 f′ (x)=6x ﹣3,

令 f′ (x)=0 得,x=﹣ ∵ f(﹣2)=﹣10,f(﹣

或 x= )=

, ,f( )=﹣ ,f(1)=﹣1,

∴ f(x)在区间[﹣2,1]上的最大值为 . (Ⅱ )设过点 p(1,t)的直线与曲线 y=f(x)相切于点(x0,y0) , 则 y0=2 ﹣3x0,且切线斜率为 k=6 ﹣3 ,

∴ 切线方程为 y﹣y0=(6 ∴ t﹣y0=(6

﹣3) (x﹣x0) , ﹣6 +t+3=0,

﹣3) (1﹣x0) ,即 4
3 2

设 g(x)=4x ﹣6x +t+3,则“过点 P(1,t)存在 3 条直线与曲线 y=f(x)相切”,等价于“g(x)有 3 个不 同的零点”. 2 ∵ g′ (x)=12x ﹣12x=12x(x﹣1) , ∴ g(x)与 g′ (x)变化情况如下: x 0 1 (﹣∞,0) (0,1) (1,+∞) + 0 0 + g′ (x) ﹣ ↗ ↘ ↗ t+3 t+1 g(x) ∴ g(0)=t+3 是 g(x)的极大值,g(1)=t+1 是 g(x)的极小值. 当 g(0)=t+3≤0,即 t≤﹣3 时,g(x)在区间(﹣∞,1]和(1,+∞)上分别至多有一个零点,故 g(x)至 多有 2 个零点. 当 g(1)=t+1≥0,即 t≥﹣1 时,g(x)在区间(﹣∞,0]和(0,+∞)上分别至多有一个零点,故 g(x)至 多有 2 个零点. 当 g(0)>0 且 g(1)<0,即﹣3<t<﹣1 时,∵ g(﹣1)=t﹣7<0,g(2)=t+11>0, ∴ g(x)分别在区间[﹣1,0) ,[0,1)和[1,2)上恰有 1 个零点,由于 g(x)在区间(﹣∞,0)和[1,+∞) 上单调, 故 g(x)分别在区间(﹣∞,0)和[1,+∞)上恰有 1 个零点. 综上所述,当过点过点 P(1,t)存在 3 条直线与曲线 y=f(x)相切时,t 的取值范围是(﹣3,﹣1) . (Ⅲ )过点 A(﹣1,2)存在 3 条直线与曲线 y=f(x)相切;
?2010-2014 菁优网

菁优网

www.jyeoo.com 过点 B(2,10)存在 2 条直线与曲线 y=f(x)相切; 过点 C(0,2)存在 1 条直线与曲线 y=f(x)相切. 点评: 本题主要考查利用导数求切线方程及判断函数的单调性求最值等知识,考查转化划归思想及分类讨论思想 的运用能力和运算能力,属难题.

?2010-2014 菁优网

菁优网

www.jyeoo.com 参与本试卷答题和审题的老师有:刘长柏;sxs123;lincy;清风慕竹;liu 老师;maths;caoqz;sllwyn(排名不分 先后)
菁优网 2014 年 6 月 12 日

?2010-2014 菁优网


相关文章:
14年北京高考试卷(文科)数学及答案
14年北京高考试卷(文科)数学及答案_高考_高中教育_教育专区。北京2014年高考数学文理科真题含答案2014 年普通高等学校招生全国统一考试北京卷 文科数学本试卷共 6 页...
2014年高考题——文科数学(北京卷)Word版含答案
2014年高考题——文科数学(北京卷)Word版含答案_高考_高中教育_教育专区。2014年高考题——文科数学(北京卷)Word版含答案2014 年普通高等学校招生全国统一考试北京...
2014年高考真题——文科数学(北京卷)解析版
2014年高考真题——文科数学(北京卷)解析版_高考_高中教育_教育专区。课标文数【2014· 北京文卷】 一、选择题 1.[2014?北京文卷] 若集合 A ? ?0,1, 2...
2015年北京高考数学文科试题及答案
2015年北京高考数学文科试题及答案_高考_高中教育_教育专区。绝密★启封并使用完毕前 2015 年普通高等学校招生全国统一考试 数学(文) (北京卷)本试卷共 5 页,150...
2015年北京高考文科数学试题及参考答案
2015年北京高考文科数学试题及参考答案_高三数学_数学_高中教育_教育专区。2015 年北京高考文科数学试题及参考答案一、选择题共 8 小题,每小题 5 分,共 40 分...
2014年北京市高考数学试卷(文科)
2014 年北京市高考数学试卷(文科)一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选出符合题目要求的一项 1. (5 分) (2014?...
2014年北京市高考文科数学试卷及答案word版
2014年北京市高考文科数学试卷及答案word版_数学_高中教育_教育专区。2014 年普通高等学校招生全国统一考试北京卷 文科数学 本试卷共 6 页,150 分。考试时长 120...
2014年北京文科数学高考试题及答案
2014 年北京市高考数学试卷(文科)一、选择题共 8 小题,每小题 5 分,共 40 分. 1、若集合 A={0,1,2,4},B={1,2,3},则 A∩B= A、{0,1,2,...
2014年北京市高考数学试卷(文科) (1)
2014 年北京市高考数学试卷(文科)一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选出符合题目要求的一项 1. (5 分) (2014?...
2016年北京市高考数学试卷(文科)
2016年北京市高考数学试卷(文科)_高考_高中教育_教育专区。2016年北京市高考数学试卷(文科)全解全析 2016 年北京市高考数学试卷(文科)一、选择题(共 8 小题,...
更多相关标签: