当前位置:首页 >> 高一数学 >>

2.3.1对数(2)


§2.3.1

对数(2)

教学目标:理解并掌握对数的运算性质; 熟练地运用对数的运算性质解决有关对数式的化简求值问题. 教学重点:对数的运算性质; 对数运算性质的运用. 教学难点:对数运算性质的运用. 一、问题情境 1.歌德巴赫猜想 ,指数幂的运算性质

a m ? a n ? a m ? n (m, n ? R )

(a m ) n ? a mn (m, n ? R ) (ab) n ? a n ? b n (n ? R)
2.展示第 59 页表格. 二、学生活动 问题 1:借助与计算器观察分析表中所给的各对数值,探究每一行的对数值之间有何关系?

loga (MN) ? loga M ? loga N , log a

M ? log a M ? log a N N

问题 2:以上性质仅仅是我们通过几个具体的数值归纳猜想出来的一个结论,他靠得住吗? 三、建构数学 1.合作探究:如何证明:loga (MN) ? loga M ? loga N ,log a 回顾证明恒等式的常用方法 证明:①设 loga M ? p , loga N ? q ,由对数的定义可以得: M ? a , N ? a .
p q

M ? log a M ? log a N ? N

∴ MN ? a a ? a
p q

p?q

∴ loga (MN ) ? p ? q ,

即证得 loga (MN) ? loga M ? loga N ,简易语言表达: “积的对数 = 对数的和” ②设 loga M ? p , loga N ? q ,由对数的定义可以得 M ? a , N ? a .
p q



M ap ? q ? a p ?q N a

∴ log a

M ? p ? q, N

即证得 log a

M ? log a M ? log a N ,简易语言表达: “商的对数 = 对数的差” N

说明:上述证明是运用转化的思想,先通过假设,将对数式化成指数式,并利用幂的运算性 质进行恒等变形;然后再根据对数定义将指数式化成对数式. 四、数学理论

loga (MN) ? loga M ? loga N ,
log a M ? log a M ? log a N , N

(1) (2)

其中 a ? 0, a ? 1, M ? 0, N ? 0

1.理解反思: (1)这两条运算性质会对我们进行对数运算带来哪些方便呢? 利用以上性质,可以使两正数的积、商的对数运算问题转化为两正数各自的对数的和、 差运算,大大方便了对数式的化简求值. (2) 对公式容易错误记忆,要特别注意:

loga (MN ) ? loga M ? loga N
n

, loga (M ? N ) ? loga M ? loga N
n

王新敞
奎屯

新疆

2.知识拓展: loga M = n loga M , loga m M = 五、数学运用 1.例题 例1.求下列各式的值:

n loga M m

(1) log2 ( 4 × 2 ) ; (2) log5 125; (3)lg 5 100 . 解: (1) log2 (4 7 ? 25) ? log2 4 + ? log2 2
7 5

7

5

? log2 2 2?7 ? log2 2 5 ? 2 ? 7 ? 5 ? 19
(2) log5 125 ? log5 5 ? 3
3

(3) lg 5 100 ?

1 2 2 log10 2 ? lg10 ? 5 5 5

, lg 3 ? 0.4771,求下列各式的值(结果保留 4 位有效数字) 例2.已知 lg 2 ? 0.3010 :
(1) lg12 (2) lg

27 16

例3.求下列各式的值: (说明:此例题可讲练结合) (1) lg14 ? 2 lg

7 lg 243 lg 27 ? lg 8 ? 3 lg 10 ? lg 7 ? lg18 ;(2) ;(3) . 3 lg 9 lg1.2

解: (1)解法一: lg14 ? 2 lg

7 ? lg 7 ? lg18 3

? lg(2 ? 7) ? 2(lg 7 ? lg 3) ? lg 7 ? lg(32 ? 2)
? lg 2 ? lg 7 ? 2 lg 7 ? 2 lg 3 ? lg 7 ? 2 lg 3 ? lg 2 ? 0
解法二: lg14 ? 2 lg

7 7 ? lg 7 ? lg18 ? lg14 ? lg( ) 2 ? lg 7 ? lg18 3 3

? lg

14? 7 ? lg1 ? 0 7 2 ( ) ?18 3

评述:此题体现了对数运算性质的灵活运用,运算性质的逆用常被学生所忽视.

(2)

lg 243 lg 35 5 lg 3 5 ? ? ? lg 9 lg 32 2 lg 3 2
1 1

lg 27 ? lg 8 ? 3 lg 10 lg(33 ) 2 ? lg 2 3 ? 3 lg(10) 2 ? (3) lg1.2 3 ? 22 lg 10
3 (lg 3 ? 2 lg 2 ? 1) 3 2 ? ? lg 3 ? 2 lg 2 ? 1 2
评述:此例题体现对数运算性质的综合运用,应注意掌握变形技巧,如(3)题各部分变 形要化到最简形式,同时注意分子、分母的联系.(2)题要避免错用对数运算性质. 2.练习 P60 练习第 1、第 2、第 4、第 5 题. 六、回顾小结 对数的运算性质;对数运算法则的综合运用,应掌握变形技巧;各部分变形要化到最简 形式,同时主义分子、分母的联系;要避免错用对数运算性质.


相关文章:
2.2.1对数与对数运算(三)
2.2.1对数与对数运算(一) 2.2.2对数函数及其性质(... 2.2.2对数函数...2.2.1 对数与对数的运算(2... 4页 2财富值 对数与对数运算(第二课时) ...
3.2.1 对数及其运算(一) 学案(人教B版必修1)
变式迁移 1 在 b=log(a-2)(5-a)中,实数 a 的取值范围是( A.a>5 或 a<2 B.2<a<5 C.2<a<3 或 3<a<5 D.3<a<4 知识点 对数式与指数...
3.2.1对数及其运算第一课时
2 (2)log4 16 ? 2 (3)log5 125 ? 3 (4)log7 49 ? 2 -1- (5)log 2 1 ? ?2 4 高一数学学案 对数及其运算第课时 跟踪练习: log 2 1、 ...
高中数学必修1-2.2.2《对数函数及其性质》同步练习(3)
高中数学必修1-2.2.2对数函数及其性质》同步练习(3)_高一数学_数学_高中教育_教育专区。2.2.2对数函数及其性质》同步练习(3)一、选择题 1.若 log2x=...
必修1教案2.2.1对数与对数运算(三)
举例 例 1 计算: (1)log34· 48· 8m=log416, 中所给的对数式的具体特点选择恰 log log 求 m 的值. (2)log89· 2732. log log 2 (3) (log25+...
2.2.1对数与对数运算(一)
能够进行对数式与指数式的互化;3.培养学生数学应用意识. (三)德育渗透目标 1.认识事物之间的普遍联系与相互转化;2.用联系的观点看问题; 3.了解对数在生产、...
苏教版2017高中数学(必修一)3.2.1对数(2) (Word版)
3.2.1 教学目标: 对数(2) 1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则解题; 2.通过法则的探究与推导,培养学生从特殊到一般的概括思想,...
3.2.3指数函数与对数函数的关系(1)
双语 1/4 编者 年级 数学直升 学科优秀教案课型 班型 新课 普通班 人民教育出版社B版必修1 对数函数与指数函数的关系知道同底的指数函数与对数函数互为反函数...
3.2.1 对数及其运算(二) 学案(人教B版必修1)
A.①③ B.②④ C.② D.①②③④ 知识点 对数运算性质的应用 例 2 计算: 7 (1)log535-2log5 +log57-log51.8; 3 (2)2(lg 2)2+lg 2· lg...
2015-2016学年高中数学 2.2.1对数与对数运算(第3课时)...
2015-2016学年高中数学 2.2.1对数与对数运算(第3课时)课时作业 新人教A版必修1_数学_高中教育_教育专区。【高考调研】2015-2016 学年高中数学 2.2.1 对数...
更多相关标签: