当前位置:首页 >> 数学 >>

2016-2017学年漳州市初三数学期末试卷 (北师大版)


漳州市 2016-2017 学年上学期教学质量抽测 九年级数学试卷(北师大版)
(满分:150 分;考试时间:120 分钟) 一、选择题(共 10 小题,每小题 4 分,满分 40 分,请把正确的一个选项填入下表中) 题号 答案 1. 一元二次方程 5x ? 3x ? 1 ? 0 的一次项系数是
2

1

2

3

4

5

6

7

8

9

10

A. -3

B.3

C. 5

D. -3x

2. 如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为

3.下列性质中正方形具有而矩形不具有的是 A.对边相等 B.对角线相等 C.四个角都是直角 D.对角线互相垂直 4.如图的四个转盘中,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是

5. 如图,在△ABC 中,D,E 分别是 AB,AC 上的点,且 DE∥BC, DE=6 ,则 BC 的长为 A.8 C.10

AD 3 ? , BD 2

B.9 D.12

6. 已知 A(2,y 1 ),B(-3,y 2 ),C(-5,y 3 )三个点都在反比例函数 y ? 则下列各式中正确的是 A. y 1 <y 2 <y 3 B. y 1 <y 3 <y 2 C. y 2 <y 3 <y 1

7 的图像上,比较 y1 , y2 , y3 的大小, x

D. y 3 <y 2 <y 1

7.某商场将每件进价为 20 元的玩具以 30 元的价格出售时,每天可售出 300 件.经调查当单价每涨 1 元时, 每天少售出 10 件.若商场每天要获得 3750 元利润,则每件玩具应涨多少元?
1

这道应用题如果设每件玩具应涨 x 元,则下列说法错误 的是 .. A.涨价后每件玩具的售价是 (30 ? x) 元 C.涨价后每天销售玩具的数量是 (300 ? 10x) 件 8.已知 a,b,c 满足 A. B.涨价后每天少售出玩具的数量是 10 x 件 D.可列方程为: (30 ? x)(300? 10x) ? 3750

1 2

a b?c a?c a?c ? ? ,则 的值为 2 3 5 2a ? b 3 B. C. 1 D.2 4

9.如图,小正方形的边长均为 1,则下面 4 个阴影部分三角形中,能与△EFG 相似的是

10.如图,反比例函数 y ?

k (x>0)的图象经过矩形 OABC 对角线的交点 M,分别与 AB, x


BC 交于点 D,E,若四边形 ODBE 的面积为 6,则 k 的值为( A.1 B.2 C.3 D.4

二、填空题(共 6 小题,每小题 4 分,满分 24 分) 11.解一元二次方程 x( x ? 2) ? x - 2 时,小明得出方程的根是 x=1,则被漏掉的一个根是 x= .

12.在一个不透明的口袋中装有 5 个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后 发现,摸到红球的频率稳定在 25%附近,则估计口袋中白球大约有 个.

13. 小刚身高 1.72m,他站立在阳光下的影子长为 0.86m,紧接着他把手臂竖直举起,影子长为 1.15m,那 么小刚举起的手臂超出头顶是 m.

14.如图,点 O 为四边形 ABCD 与四边形 A1B1C1D1 的位似中心,OA1=3OA,若四边形 ABCD 的面积为 5,则四边形 A1B1C1 D1 的面积为 . 15. 如图, 在菱形 ABCD 中, AB 的垂直平分线 EF 交对角线 AC 于 点 F, 垂足为 E, 连接 DF, 且∠CDF=27°, 则∠DAF 等于 度.

2

16.已知正比例函数 y1 ? x ,反比例函数 y 2 ?

1 1 ,由 y1、y2 构成一个新函数 y ? x ? ,其图象如图所示. x x

(因其图象似双钩,我们称之为“双钩函数” )给出下列几个命题: ①y 的值不可能为 1; ②该函数的图象是中心对称图形; ③当 x>0 时,该函数在 x=1 时取得最小值 2; ④在每个象限内,函数值 y 随自变量 x 的增大而增大. 其中正确的命题是 (填所有正确命题的序号).

三、 解答题(共 9 题,满分 86 分.) 17. (满分 8 分) 解方程: 4 x 2 ? 8x ? 1 ? 0 . 解:

18.(满分 8 分) 如图,在△ABC 中,AB=AC,D 为 BC 的中点,点 E 是△ABC 外一点且四边形 ABDE 是平行四 边形. 求证:四边形 ADCE 是矩形. 证明:

3

19.(满分 8 分)某个阳光明媚的一天, 数学兴趣小组的同学们去测量一棵树 AB 的高度 (这棵树底部可以到达, 顶部不易到达) ,他们带了以下测量工具:皮尺,标杆,小平面镜.请你帮他们完成以下问题. (1)所需的测量工具是 (2)请在图中画出测量示意图. ; (选 2 种工具)

20.(满分 8 分) 我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且大棚内温 度为 20℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭后大棚内温度 y(单位:℃)随光照 时间 x(单位:h)变化的大致图象,其中 BC 段是双曲线 y ? (1)这天恒温系统在保持大棚内温度 20℃的时间有 (2)求 k 的值; (3)当 x=16 h 时,大棚内的温度约为多少℃?

k 的一部分.请根据图中信息解答下列问题: x
h;

4

21. (满分 8 分)有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是 A.平行四边形,B.菱 形,C.矩形,D.正方形,将这四张卡片背面朝上洗匀后.
(1)随机抽取一张卡片图案是中心对称图形的概率是 ;

(2)随机抽取两张卡片(不放回) ,求两张卡片图案都是轴对称图形的概率,并用树状图或列表法加以说明.

22. (满分 10 分) 如图,一艘军舰位于点 A 处,在其正南方向有一目标 B,在点 B 的正东方向有一目标 C, 且 AB+BC=3 海里,在 AC 上有一艘补给船 D,DC 为 1 海里;军舰从点 A 出发,向 AB,BC 方向匀速航行, 补给船同时从点 D 出发,沿垂直于 AC 方向匀速直线航行,欲将一批物品送达军舰.已知军舰的速度是补给 船的 2 倍,军舰在由 B 到 C 的途中与补给船相遇于 E 处,那么相遇时补给船航行了几海里?

5

23. (满分 10 分) 如图,点 P 是正方形 ABCD 边 AB 上一点(点 P 不与点 A,B 重合) ,连接 PD,将线段 PD 绕 点 P 顺时针方向旋转 90°得到线段 PE,PE 交边 BC 于点 F,连接 BE,DF.
(1)求∠PBE 的度数; (2)若△ PFD∽△BFP,求

AP 的值. AB

6

24. (满分 12 分)定义:有一组邻边相等的凸四边形叫做“准菱形” .利用该定义完成以下各题: (1) 理解 填空:如图 1,在四边形 ABCD 中,若 (填一种情况) ,则四边形 ABCD 是“准菱形”; (2)应用 证明:对角线相等且互相平分的“准菱形”是正方形; (请画出图形,写出已知,求证并证明) (3) 拓展 如图 2,在 Rt△ABC 中,∠ABC=90°,AB=2,BC=1,将 Rt△ABC 沿∠ABC 的平分线 BP 方向平移得到 △DEF,连接 AD,BF,若平移后的四边形 ABFD 是“准菱形”,求线段 BE 的长.

7

25.(满分 14 分)如图 1 ,一次函数 y1 ? kx ? b (k,b 为常数,k≠0)的图象与反比例函数 y 2 ? m≠0)的图象相交于点 M(1,4)和点 N(4,n) . (1) 填空:①反比例函数的解析式是 ; ;

m (m 为常数, x

②根据图象写出 y1<y2 时自变量 x 的取值范围是

(2) 若将直线 MN 向下平移 a(a>0)个单位长度后与反比例函数的图象有且只有一个公共点,求 a 的值;

m 的图象(x>0)上有一个动点 C,若先将直线 MN 平移使它过点 C,再绕点 C 旋转 x 得到直线 PQ,PQ 交 x 轴于点 A,交 y 轴点 B,若 BC=2CA, 求 OA·OB 的值.
(3) 如图 2,函数 y 2 ?

8

参考答案及评分意见
一、选择题: 1.A 2.C 3.D 4.A 5.C 6.B 7.D 8.A 9.B 10.B 二、填空题: 11. 2 三、17.方法 1: 解: 两边同除以 4,得:x ﹣2x+ 配方得:x ﹣2x+1= 即(x﹣1) =
2 2 2

12.15

13. 0.58

14. 45

15. 51

16. ①②③

1 =0,?????????1 分 4

3 ,????????????3 分 4

3 ,????????????4 分 4

∴x﹣1=±

3 .????????????6 分 2

∴x1=1+ 方法 2:

3 3 ,x2=1﹣ .????????????8 分 2 2

解:这里 a=4,b=-8,c=1.????????????????????????1 分 ∵△=(-8) -4×4×1=48>0,?????????????3 分 ∴x=
2

8 ? 48 8 ? 4 3 = .?????????????6 分 8 8
x1 =



2? 3 2



x2=

2? 3 .?????????????8 分 2

18.证明:∵四边形 ABDE 是平行四边形, ∴AE∥BD,AE=BD,AB=DE.????????????2 分 ∵D 为 BC 中点, ∴CD=BD.????????????3 分 ∴CD∥AE,CD=AE.????????????5 分 ∴四边形 ADCE 是平行四边形????????????6 分 ∵AB=AC, ∴AC=DE(此处写 AD⊥BC,即∠ADC=90°亦可).????????7 分 ∴四边形 ADCE 是矩形.????????????8 分

9

19.方法 1: (1)皮尺,标杆;?????????2 分 (2)测量示意图.????????????8 分 方法 2: (1)皮尺,小平面镜;?????????1 分 (2)测量示意图????????????8 分 20.解: (1)8????????????2 分 (2)∵B(10,20) , ∴ k ? 10 ? 20 ? 200 ??????????5 分 ( 3 ) 由

y?

200 x





x ? 16





y?

200 ? 12.5 ????????7 分 16

答:当 x ? 16 h 时,大棚内的温度约为 12.5℃.???8 分 21.(1)1;???????????????2 分 (2) (2)列表如下:其中 B,C,D 为轴对称图形,A 不 为轴对称图形, A A B C D ﹣﹣﹣ (A,B) (A,C) (A,D) B (B,A) ﹣﹣﹣ (B,C) (B,D) C (C,A) (C,B) ﹣﹣﹣ (C,D) D (D,A) (D,B) (D,C) ﹣﹣﹣

??????????????????????????5 分 所有等可能的情况有 12 种,其中都为轴对称图形的有 6 种??????7 分 则 P= = .??????????????????????????8 分

22.解:设相遇时补给船航行了 x 海里,即 DE=x 海里????1 分 ∵军舰的速度是补给船的 2 倍,他们的时间相同, ∴AB+BE=2x. ∵AB+BC=3, ∴EC=3-2x.?????????????2 分 Rt△CDE 中,CD=1, 根据勾股定理可得方程 x2+12=(3-2x)2.?????????????5 分 解得 x1=2-

2 3 2 3 ,x2=2+ (不合题意,舍去).?????????????9 分 3 3 2 3 )海里.?????????????10 分 3
10

答:相遇时补给船航行了(2-

23.解: (1)过点 E 作 EQ⊥AB 交 AB 的延长线于点 Q.????????????1 分 由旋转得 PD=PE ,∠DPE=90°.?????????????2 分 ∵在正方形 ABCD 中,∠A=∠ABC=90°,AD=AB, ∴∠EQP=∠A=90°.?????????????3 分 ∵∠2+∠3=90°,∠3+∠4=90° ∴∠2=∠4. ∴△PAD≌△EQP.?????????????4 分 ∴EQ=AP,AD=AB=PQ. ∴AP=EQ=BQ.?????????????5 分 ∴∠5=45°. ∴∠PBE=180°-∠5 =135°.?????????????6 分 (2)∵△PFD∽△BFP, ∴

PD PF .?????????????7 分 ? BP BF

∵∠A=∠PBC,∠2=∠4, ∴△APD∽△BFP.?????????????8 分 ∴ AP ? PD .
BF FP

即 FP ? PD .?????????????9 分
BF AP

∴ PD ? PD .
BP AP

∴ AP ? BP . ∴ AP ? 1 .???????????10 分
AB 2

24.解:(1)答案不唯一,如 AB=BC.???????2 分 (2)已知:四边形 ABCD 是“准菱形”,AB=BC,对角线 AC,BO 交于点 O,且 AC=BD,OA=OC,OB=OD. 求证:四边形 ABCD 是正方形.??????4 分

证明: ∵OA=OC,OB=OD, ∴四边形 ABCD 是平行四边形.??????5 分 ∵AC=BD, ∴平行四边形 ABCD 是矩形.??????6 分 ∵四边形 ABCD 是“准菱形”,AB=BC, ∴四边形 ABCD 是正方形.??????7 分 (3)由平移得 BE=AD,DE=AB=2,EF=BC=1,DF=AC= 5.????8 分 由“准菱形”的定义有四种情况: ①如图 1,当 AD=AB 时,BE=AD=AB=2.?????9 分 ②如图 2,当 AD=DF 时,BE=AD=DF= 5.????10 分

11

③如图 3,当 BF=DF= 5时,延长 FE 交 AB 于点 H,则 FH⊥AB. 1 ∵BE 平分∠ABC,∴∠ABE= ∠ABC=45°. 2 ∴∠BEH=∠ABE=45°.∴BE= 2BH. 设 EH=BH=x,则 FH=x+1,BE= 2x. ∵在 Rt△BFH 中,BH2+FH2=BF2, ∴x2+(x+1)2=( 5)2, 解得 x1=1,x2=-2(不合题意,舍去), ∴BE= 2x= 2.??????11 分 ④如图 4,当 BF=AB=2 时,与③)同理得:BH2+FH2=BF2. 设 EH=BH=x,则 x2+(x+1)2=22, -1+ 7 -1- 7 解得 x1= ,x2= (不合题意,舍去), 2 2 ∴BE= 2x= 14- 2 .??????12 分 2 14- 2 . 2

综上所述,BE=2 或 5或 2或

4 25.(1)① y= .?????????????2 分 x

1或x>4 .?????????????4 分 ② 0<x<
(2)点 M(1,4)和点 N(4,1)分别代入 y1 ? kx ? b 得 y1 ? - x ? 5 ??5 分
直线 AB 向下平移 a 个单位长度后的解析式为 y=-x+5-a,??6 分 4 把 y= 代入消去 y,整理,得 x2-(5-a)x+4=0.????????7 分 x ∵平移后的直线与反比例函数的图象有且只有一个公共点, ∴Δ =(5-a)2-16=0.?????????????8 分 解得 a=1 或 a=9.?????????????9 分 (3)设点 C(a,b) ,则 ab ? 4 如图 1,过 C 点作 CH⊥OA 于点 H. ①当点 B 在 y 轴的负半轴时,如图 1 ∵BC=2CA, ∴AB=CA. ∵∠AOB=∠AHC=90°,∠1=∠2, ∴△ACH∽△ABO.?????????????10 分 ∴OB=CH=b,OA=AH=0.5a ∴ OA ? OB ?

1 ab ? 2 . ?????????????11 分 2

②当点 B 在 y 轴的正半轴时, 如图 2,当点 A 在 x 轴的正半轴时,

12

∵BC=2CA, ∴. CA ? 1
AB 3

∵CH∥OB, ∴△ACH∽△ABO.?????????????12 分 ∴ CH ? AH ? CA ? 1
OB OA AB 3

∴.OB=3b,OA=1.5a?????????????13 分 ∴ OA ? OB ?

9 ab ? 18 2

如图 3,当点 A 在 x 轴的负半轴时,BC=2CA 不可能. 综上所述,OA·OB 的值为 18 或 2.??????14 分

13


赞助商链接
相关文章:
...~2017学年北师大版九年级上学期数学期末考试题(含答...
山东省济南市槐荫区2016~2017学年北师大版九年级上学期数学期末考试题(含答案) - 20162017 学年度九年级数学调研测试题( 2017.1) 一、选择题 1.点(一 1,...
2016-2017学年北师大版初中二年级数学第一学期期末考试...
2016-2017学年北师大版初中二年级数学第一学期期末考试试卷及答案_数学_初中教育_教育专区。2016-2017 学年初中二年级数学第一学期期末考试试卷 一、选择题(本题...
2016-2017学年北师大版初二数学下册期末测试卷及答案
2016-2017学年北师大版初二数学下册期末测试卷及答案 - 2016~2017 学年度第二学期期末测试题 八年级数学 本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分....
北师大版2016-2017学年初三上学期数学期中考试试卷
北师大版2016-2017学年初三上学期数学期中考试试卷 - 2016-2017 学年初三上学期数学期中考试试卷 一、 选择题(每小题 3 分,共 18 分) 1.下列安全标志图中,...
2016-2017学年最新北师大版小学二年级下册数学期末试卷
2016-2017学年最新北师大版小学二年级下册数学期末试卷_数学_小学教育_教育专区。2016-2017 学年度二年级数学下册测试卷 姓名___成绩___ 一、填一填(每空1分,...
2016-2017学年第二学期北师大版七年级数学期末试卷及答案
2016-2017学年第二学期北师大版七年级数学期末试卷及答案 - 2016-2017 学年七年级(下)期末数学试卷 一、选择题:(本题共 10 小题,每小题 3 分,共 30 分...
2016-2017学年北师大版三年级下数学期末试卷
2016-2017学年北师大版三年级下数学期末试卷 - 2016—2017 学年第二学期数学期末试卷 一、填空(22 分) 1.16 平方米=( 4200 公顷= ( )平方分米 )平方千米...
2016-2017学年度 上学期期末模拟考试试卷(北师大版) 九...
2016-2017学年度 上学期期末模拟考试试卷(北师大版) 九年级数学_数学_初中教育_教育专区。2016-2017学年度 上学期期末模拟考试试卷 九年级数学 ...
北师大版2016-2017学年八年级下学期期末数学试卷含答案
北师大版2016-2017学年八年级下学期期末数学试卷含答案 - 2016-2017 学年八年级(下)期末数学试卷 一、选择题:每小题 3 分,共 45 分.在四个选项中只有一项...
北师大版2016-2017学年五年级(上册)期末数学试卷及答案
北师大版2016-2017学年五年级(上册)期末数学试卷及答案 - 2016-2017 学年五年级(上)期末数学试卷 一、数与计算(1-5 每题 2 分) 1. (2 分)在 0.40 ...
更多相关文章: